———

Blockchain and r-- -
Contract Mechanism
.~ Design Challenges

What are we talking about today?

toeconomics is about...

| e Using cryptography and economic incenti

" achieve information security goals

o Cryptography can prove properties about messages
that happened in the past

‘0 Economicincentives defined inside a system can

. encourage desired properties to hold into the future

*Credit to Vlad Zamfir fFor this characterization

S |:-"

L Claim: it is not proof of work, nor decentralized mon
1 nor linked-list data structures, but specifically
1 cryptoeconomics that is the single key Fundamentally
nsFormatlve idea that came out of Satoshi’'s code and
| whitepaper.

> on public vs consorti

‘The cryptoeconomic approach is more useft

- chain applications, as in restricted-identity appllcatl 1S

.~ there are often legal/social ways of penalizing bad actors
" However, there are sometimes parallels

“Fault accountability” in consensus

ko

je: tions of cryp‘t onomics

8 Consensus layer
10 Proof of work
o Proof of stake
. Second layer
" o Smart contract mechanisms
) Gadgets (mechanisms that get used by other
)echanisms)
inel constructions (lightning, Raiden, Truebit, etc)

i

.

e

ays to look at on-chain ap

e Separated concerns approach: assume bc , m |

" (consensus) works perfectly. Ensuring correct operation

of the consensus layer is the consensus layer’s

. responsibility. Using this assumption prove that second
“layer works fine.

tegrated approach: look at and analyze attacks on

h layers simultaneously.

Clalm both are useful. Separated concerns approac
Ften works as an abstraction, but it is important to note
where the abstraction is more likely to Fail.

Y

| dproperties o conser

e Convergence: new blocks can be added to L/ f
= blocks cannot be replaced or removed
e Validity:

.~ 0 Only valid transactions should be included in a block
L 0 Clock should be roughly increasing

Data availability: it should be possible to download Full
a associated with a block

nsorship: transactions should be able to get

ded if they pay a reasonably high fee

ymodels . .

® |n traditional Fault-tolerance research, we :

- honest majority assumption, and use this to [Sv —
. claims about correctness of algorithms
- In cryptoeconomic research, we make assumptions
about:
> Level of coordination between participants
udget of the attacker
the attacker

P

yodels

ru—‘--

°o Uncoordlnal:ed majority: all actors make -.

" independently, no actor controls more than X% —
Coordinated choice: most or all actors are colluding,
. though in second-layer systems we may rely on free
entry from non-colluding actors

".bing attacker: all actors make choices independently,
‘an attacker can add their own money to influence

. nts’ payoff matrices

ult tolerance of Bitcoin

Model Fault tolerance / s_e'c‘u"rity m ‘
Honest majority* ~%2 (as latency approaches zero) ;
Uncoordinated majority? ~0.2321

| - | Coordinated majority 0
I ibing attacker ~13.2 * k budget, 0 cost

coin.com/assets/Whitepapers/Anonymous-Byzantine-Consensus-from-Moderately-Hard-
r-Bitcoin.pdf
roceedings/30_Sapirshtein.pdf

Example: Schellingcoin

wple: Schellingcoin

® Uncoordinated choice: you have the / |
truth, because everyone else will vote the truth and you
~ only get a reward of P if you agree with them
' - Why will everyone else vote the truth? Because they are

L reasoning in the same way that you are!

ole: chellindi —

" Coordinated choice: security margln exa tly

| because total payoff is the same regardless of res

apsilon attack —

B

| fibing attacker can corrupt the Sche
tbudget of P + € and zero cost!

You vote 0 You vote 1

Base game: Others vote 0 P 0
kL Others vote 1 0 P

You vote 0 You vote 1

Others vote 0 P P+¢

Others vote 1 0 P

e coordinated

--'re bribing attac

\ ‘Subsidized mining pools (eg. to inFluenc-
- voting)

Subsidized stake pools in PoS
‘,rExchanges offering interest rates, participating in coin
' oting on users’ behalf

i

C_ntractappli¢t| —

® Outsourced computation and storage
Provably fair random number generation
» Providing true info about the real world (“oracles”)
. Governance (DAOs)

. Stable-value cryptocurrencies (“stablecoins”)
ounties for solutions to math or CS problems

ng the time

. Outsourced computation, case 1: problems in NP

s://eprint.iacr.orq/2015/460.pdf by Andrew Miller et al)

https://eprint.iacr.org/2015/460.pdf

def accept solution(soln):
if correct(soln):
send(msg.sender, self.balance)

t solution(solnhash):
1f.commits[msg.sender] = {
hash: solnhash,

validBlock: block.number + 10

accept solution(soln):
eerrect(soln) and \
block.number >= self.commits[msg.sender].validBlock and \
r“;'sha3(soln + msg.sender) == self.commits[msg.sender].hash:

(msg.sender, self.balance)

L
L. .
By
yd
H ri

> idea: save intermediate sta

Suppose we can represent y = f(x) as y F __/

) Submitter sends intermediate states of computéltl0 T
R o S, =Ff.(x)

-. s = 1,(S))

e

ach f. can be computed within a transaction

nitter also submits a deposit

ll

le idea: save intermediate stat:

® Within some challenge period, anyone can : __,,_/ _

" “challenge index” i T
IFS. . !=F . (S), then the challenger gets the submitter's
deposit

" If no challenges are made within the challenger period,

| mitter gets their deposit back plus a reward

-téble td _c‘ea. —

/

\ ‘Let: c = cost of computing, D = deposit, r / _

i

‘ (submitter, challenger) Submitter computes fairly Submitter cheats

Challenger checks and (r, -c) (-D, D)
' challenges if needed

hallenger does nothing (r, 0) (r, 0)

ing the Nash eq‘Ui iU

- | (submitter, challenger) Submitter computes fairly Submitter ¢ /

Challenger checks and
challenges if needed

(r-c, -c) (-D, D-c)

Challenger does nothing (r-c, 0) (r, 0)

1 et: P_ = prob submitter cheats, P = prob challenger checks

IR =r-c+P_(c-DP) R_=P_(DP.-¢)

P =c¢/D

P

In many situations, there will be an inherent tradeoff
between capital efficiency and correctness

nded idea: multi-step ¢ ame

4 | Sme|tter SuU metS (SO' 5512 S1024) + deDOSi e ;

» Challenger disagrees with one of these answers (WLOG

say the First), submits (S, S,..S..,) + deposit

Submitter disagrees with one of these answers (WLOG say

- the second), submits (S, ,, S,,, S.,,) + deposit

), result verified on-chain

allenger submits (S5140 53155316

ractive games and trust assump

° Interactlve games (incl. all of the above
. Raiden) lean very heavily on the non- censorshlp prc
" of a blockchain

Normally, censorship implies denial-of-service

' Here, censorship implies theft

nge flood attacks
| -'Send a very large amount of challenges at X

) Victims do not have enough block space to reply Ton
" challenges in time

) Attacker unfairly “wins” in at least some situations
. This works on any interactive protocol

llenges

==
T e

Can we detect censorship and have online f p 0Q
censoring blocks?
Can we make it impossible to censor some things without
censoring everything?

o “Ethereum is resistant to soft forks” ... but only

somewhat

~ m http://hackingdistributed.com/2016/07/05/eth-is-more-resilient-to-censorship/
https://pdaian.com/blog/on-soft-fork-security/

esistance via in-protocol scheduling

http://hackingdistributed.com/2016/07/05/eth-is-more-resilient-to-censorship/
http://hackingdistributed.com/2016/07/05/eth-is-more-resilient-to-censorship/
https://pdaian.com/blog/on-soft-fork-security/
https://pdaian.com/blog/on-soft-fork-security/

enges R

. - P .".
__‘h o /

e Can we detect flood attacks in-protocol and automa
delay challenge periods?
o Doable in ethereum: if a block is X% full, count it as
Y being worth only 1-X of a block

“ ‘Can we dual-use deposits in interactive games with
leposits in proof of stake?

Auctions and Privacy

second-price auctio

,. Phase 1: everyone submits sealed bld -
) Phase 2: everyone unseals bid, top bidder wins and pz JS*m
second highest bid

o challenges T

. - P ."l
B /'

e To prevent submitting very many sealed --/ on
opening the ones you want, a sealed bid should havea g
deposit
» How large is the deposit?

* |IF the deposit is the size of the bid, this reveals info about
he bid size
- Destroys incentive compatibility

—

ssible solution e

/".

e Allow deposits to exceed size of bid (refunding exc Ss

. reveal time), then distribute 0.1% of auction revenue to all
bidders in proportion to excess deposits

Goal: encourage “fake submissions” with very low value
 but high deposits

An attacker can bribe depositors to reveal their values, but
his invites even more people to make fake submissions

O: formalize all of this

1 uition: mechanism designoftén-
& you can trust For both correctness and privai
Slockchain can be trusted for correctness, but not priva
" Hence, there are additional challenges in designing
_ incentive-compatible mechanisms that can run on a
’ blockchain.

. TODO: formalize all of this

i

Randomness

=

andomness

==

|dea for coin flip game: both parties put in10
block hash odd party A gets 20 ETH, if even party B does
'@ Problem: exploitable by miners!

o IfFI play the game and am a miner, and | create the next
block, then | can selectively not publish it if | dislike the
outcome

'-.\

he est) =-10
:10* 0.5 + (-10) * 0.5- 5 = -5

aloguing attacks :

® Arbitrary selection (you set the result to wha
- Dice re-rolling -
' Influence (eg. shift probability of heads from 50% to 52%) |

'randomness

e Single block

- o Re-rolling cost = block reward
» Majority function of N blocks

- o Costofinfluence ~= O(sqrt(N)) * block reward

' gn.ac.il/~idddo/CoA.pdf and other works by Iddo Bentov

http://www.cs.technion.ac.il/~idddo/CoA.pdf

=

yle randomness

==

A o
"‘. RANDAO (http://github.com/randao/rado= ——
® N parties submit hashes + deposit
'® N parties all submit preimages
Result is xor of preimages
If any party does not send their preimage in time, game
restarts, absentee’s deposit lost
)nomic security property: can force a re-roll at cost of
ayer's deposit

http://github.com/randao/randao

elock randomness

-

Compute some non-parallelizable function of, say
block hash
o lterated hashes (eg. SHA3)
o Iterated modular square root (eg. Sloth
. https://eprint.iacr.org/2015/366.pdf)

Intent: it is not impossible to compute the function of a
ralue made available at time T until time T+x for some

Wi X

13 cryptoeconomic game to incentivize revealing
blem hardness to time

https://eprint.iacr.org/2015/366.pdf
https://eprint.iacr.org/2015/366.pdf

Other challenges

challenges

® Stablecoins Nl
. o Two challenges: (i) price oracle, (ii) mechanism, see
https://github.com/rmsams/stablecoins and
._ http://makerdao.com/
'Provably fFair games
Games with private random info tend to be hardest,
poker (see literature on “mental poker” protocols)

https://github.com/rmsams/stablecoins

challenges

® Incentivized data storage A/

.~ o Paying for download vs paying for avallablllty
@ Can we incentivize geographical decentralization?
. o Oneidea:incentivize being very close to at least

- some of the users of the system, with greater

L incentives for users who are underserved; assume
at users are geographically decentralized

