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Abstract. Throughout the years, many cryptographically verifiable vot-
ing systems have been proposed with a whole spectrum of features and
security assumptions. Where the voter casts an in-person (and possi-
bly paper) ballot and leaves, as is common in a governmental election,
the majority of the proposals fall in the category of providing uncondi-
tional integrity and computational privacy. A minority of papers have
looked at the inverse scenario: everlasting privacy with computational
integrity. However as far as we know, no paper has succeeded in pro-
viding both unconditional integrity and privacy in this setting—it has
only been explored in boardroom voting schemes where voters partici-
pate in the tallying process. Our paper aims for a two-level contribution:
first, we present a concrete system with these security properties (one
that works as a backend for common ballot styles like Scantegrity II or
Prêt à Voter); and second, we provide some insight into how different
combinations of security assumptions are interdependent.

1 Introduction

An end-to-end verifiable (E2E) voting system uses cryptography to provide a ver-
ifiable tally while maintaining the secrecy of each voter’s ballot. Over decades of
research in this area, one trend to emerge is a move toward real-world voting sys-
tems suitable for common election scenarios, including governmental elections.
For our purposes, we consider a system to be suitable for a governmental election
if it has two properties:

1. Vote-and-go: once a voter has completed and submitted their ballot, they
do not need to be involved in the tallying process.

2. Human-votable: a voter can cast a vote without having to perform any
computations (bare-handed) through a process similar to a traditional (non-
verifiable) voting system, such as DRE or optical scan voting

Many E2E systems are designed within these constraints and some have been
used in governmental elections [7, 6]. The governmental setting is contrasted
with other practical settings, such as a boardroom vote, where all voters might
be physically present in the same room with their own trusted computational
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devices. This setting is less constrained and allows different cryptographic tech-
niques to be used — e.g., an unconditionally secure multiparty computation.

In the governmental setting, vote-and-go requires a third party election au-
thority to collect a representation of the voter’s ballot. This representation is
often an encryption or commitment to the voter selections for DRE-based sys-
tems, or for optical scan systems, a paper-based obfuscation (e.g., code substitu-
tion, permutation, split) that is accompanied by some encryption or commitment
value on the ballot or in the backend data. Standard encryption and commit-
ment schemes are not secure against a computationally unbounded adversary.
Such an adversary can either recover the message (Elgamal or Paillier), change
the message (Pedersen commitment) or both (hash-based commitments). When
the message is a vote, this translates into, respectively, breaking election integrity
or ballot secrecy or both.

Computational assumptions underly nearly all real-world cryptographic ap-
plications, whether it is HTTPS, password hashing, or secure messaging. How-
ever the exact assumptions evolve over time as new attacks are found, as do
the security parameters that realize them. An unconditionally secure protocol
alleviates us from monitoring the validity of these assumptions over time and
future-proofs the protocol against new innovations like quantum computing.

2 Prior Work

There are hundreds of papers proposing voting schemes and it is not possible
to review even all the relevant ones. Instead, we have broken the literature into
four broad categories that classify a majority of the proposals. Table 1 provides
a summary of the election integrity and ballot secrecy assumptions for each
cluster.

Distributed EA. Beginning with Cramer et al [16], many systems homo-
morphically encrypt ballots under a public key that is distributed amongst a
set of trustees forming an election authority (EA). If an unbounded adversary
attacks a transcript of the election, they can learn how every voter voted by
breaking the encryption key but cannot change the value that is encrypted. Fur-
ther, assuming true zero knowledge proofs are used, unbounded adversaries can-
not undetectably change the tally. Note that in practice, many of these systems
use non-interactive zero knowledge proofs based on the Fiat-Shamir heuristic —
this enables an unbounded adversary (whether a voter or a trustee) to lie [21] in
a way that can undetectably change a tally, however this assumption is practi-
cal to avoid [25, 19]. If a suitable threshold of trustees are corrupted, they may
recover how each voter voted but they cannot change the tally. A few notable
systems of this type include: MarkPledge [32], Prêt à Voter [12], Voter-initiated
auditing [3], Helios [1], STAR-Vote [2], and vVote [6].

Chaumian. Beginning with Chaum [9], a series of systems also use a dis-
tributed election authority much like above. However these systems add an ad-
ditional assumption: trustees can use a special computational device, called a
blackbox, to perform computations such that the inputs and intermediate values
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Category Examples Secrecy Integrity

Distributed EA Pret a Voter, Helios • • • •
Chaumian Punchscan, Scantegrity • • •
Everlasting Privacy Moran-Naor • • • •
Boardroom Broadbent-Tapp • • • •
This work • • •

Table 1: A comparison of computational and collusion security assumptions in
four common categories of proposed cryptographic voting systems, plus our own
system. Note: this table does not attempt to capture all desirable features of a
voting system. We acheive the same security assumptions as boardroom voting
systems, plus we allow human-voteable ballots and vote-and-go tallying. The
‘special assumption’ used in Chaumian systems (and this work) is a blackbox
assumption.

are not leaked to any participant. This enables an election system based solely
on cryptographic commitments and commitment-based cut-and-choose proofs.
Assuming the commitment scheme is perfectly binding, an adversary can break
ballot secrecy by breaking the commitment scheme (if unbounded), corrupt-
ing a sufficient number of trustees to recover the input to the blackbox, or by
breaking the blackbox hardware assumption. However an unbounded adversary
cannot undetectably change the values committed to, all modifications to the
tally are detectable even if made by a fully colluding election authority, and the
soundness of the blackbox computations are verifiable and not assumed to be
done correctly. Notable systems of this type include Punchscan [33], Scantegrity
I/II [10, 11], Eperio [18], and Remotegrity [40].

Everlasting Privacy. Beginning with Cramer et al [15] (and related to ear-
lier work by Chaum [8]), a reasonable observation was made that integrity need
only last the lifetime of the election but ballot secrecy could be relevant for
decades or centuries. It is possible to invert the resistance of a voting scheme to
computationally unbounded adversaries from integrity to privacy. Most modern
work uses perfectly hiding homomorphic commitments in lieu of homomorphic
encryption, however this creates a dilemma: if the random factors of the com-
mitments are unknown, a tally cannot be computed (and if they are known, then
the commitment’s hiding property no longer resists an unbounded adversary).
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Most systems compromise by using untappable channels to communicate random
factors amongst trustees— thus it does not retain unconditional ballot secrecy
under collusion. Notable systems of this type include Moran-Naor [30], split-
ballot voting [31], and extensions to distributed EA systems [17]. Recent work
from Locher et al. has examined the removal of the collusion assumption, pre-
senting schemes [26, 27] that have everlasting privacy under both an unbounded
and fully colluding EA (with computational integrity).

Boardroom Voting. The term boardroom voting was suggested by Benoloh
and Fisher [4] to categorize systems where voters participate in the tallying pro-
cess (i.e., are not vote-and-go). Like the general literature on unconditionally
secure protocols, these schemes tend to use multiparty computation based on
verifiable secret sharing. Note that not all boardroom voting schemes are uncon-
ditional — many boardroom systems use computational assumptions to be more
practical [37, 38, 24, 22]. However the ones that are resist unbounded adversaries
for both integrity and privacy (but collusion between them can break either
property). One way to frame our contribution is porting the security proper-
ties of these systems to a governmental election. This has been explored [5] and
the vote-and-go property is achieved, voters need to perform computations in
the booth (and it is thus not human voteable). One might argue that ThreeBal-
lot [36] is a human-voteable instantiation of secret sharing. Indeed, its properties
are very close to what we want to achieve. Unfortunately ThreeBallot is not fully
private [23].

3 Framing our Contribution

It has long been asserted within our community that perfect ballot secrecy and
perfect election integrity cannot be simultaneously achieved. This trade-off is
quite true under certain assumptions but it is often repeated as a simple fact
without internalizing the fine print. As it turns out, if you read the fine print, it
is possible to achieve both — indeed many boardroom voting systems already
do. The challenge is achieving these security properties while also allowing the
voter to deposit their ballot with the EA and leave. If the deposited ballot is
an encryption or computational commitment, it must be either computationally
binding or hiding but not both. If the ballot is secret shared to the trustees,
however, it can be perfectly hiding and binding under an assumption about the
number of honest trustees. The immediate difficulty here is that secret sharing
a vote will require a computational device.

This paper is intended as exploratory research to understand better how far
unconditional privacy and integrity can be extended to a practical governmental
voting system. We are not insisting that our system is immediately better than
existing approaches because we require certain trade-offs that might be less
desirable (discussed below). However we think this area deserves exploration.

In our approach, we begin in the Chaumian model. We noted in our litera-
ture review that systems in this model primarily rely on a commitment scheme.
As we discuss in Section 4.1, verifiable secret sharing can be used as a perfectly
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hiding commitment that is also perfectly binding but only to the participants in
the secret sharing scheme. We take a simple system from this model, Eperio [18],
which is already just a backend tallying system that can interface with a variety
of paper ballots (permutation-based ballots like Prêt à Voter and code-based
ballots like Scantegrity), and we replace the commitment scheme with a pro-
tocol based on verifiable secret sharing. We then show that the cut-and-choose
protocols continue to provide election integrity, assuming an honest threshold of
trustees (which is already assumed in computational Eperio for ballot privacy).
The result is an interesting protocol that achieves unconditional privacy and
integrity, plus voters can vote with paper ballots.

Universal verification. We pay a price for unconditional secrecy and pri-
vacy, namely we have to sacrifice universal verification. Chevallier-Mames et al.
prove that achieving unconditional privacy is sufficient to thwart universal veri-
fication (if it is possible for voters to choose to abstain from voting) [13]. We also
note that attempts of adding it to the basic primitive we use (VSS) generally
has only been achieved with computationally secure primitives [39, 37]. In our
protocol, voters can still perform the traditional cast-as-intended and recorded-
as-cast checks but voters have to trust that a threshold of trustees are honest
in reporting that ballots were tallied-as-recorded. It is not clear this trade-off is
worth the gain in security against unbounded adversaries, but we will say that
it is not that different from cryptographic election where voters defer to others
(say each political party) to perform the cryptographic election audit of the tally.
Finally, our approach of using paper ballots does not preclude traditional risk-
limiting manual recounts done in conjunction with the cryptographic election if
the ballots have a cryptographic overlay (as in Scantegrity II).

Blackbox assumption. Finally, like Punchscan, Scantegrity and Eperio,
we do make a blackbox assumption that a perfectly private computation can be
performed on a tamper-resistant device. Blackboxes are stateless devices without
any non-volatile memory. The simply compute an output from a set of inputs
without revealing any intermediary values in the function. They could be im-
plemented as a hardware circuit, FPGA, or in software in a trusted execution
environment such as Intel TXT (c.f., [29]).

Future work might explore the removal of this assumption, through a dis-
tributed computation, however we rely on it for this initial work in the area.
We do note however that it is not immediately clear that a distributed com-
putation is necessarily better. If an adversary wanted to attack the election by
corrupting computational devices, it seems logical that compromising n devices
is harder than compromising 1—in fact, this reasoning is seductive enough that
the shareholders might use standard computers without extra precautions to
perform their computations. In such case, compromising n devices might be as
easy as compromising one (e.g., through an exploit for a common operating
system) and might indeed be easier if the single blackbox device (it does not
even need to be a full fledged computer) is given a lot of attention in terms of
hardening it against attack.
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Human-voteable & vote-and-go. Some voting schemes require the voter
to participate in some multi-party computation. For example, [5] requires that
voters take their vote and secret-share it with different election authorities. Even
[28], a voting scheme “without cryptography,” requires the voter to perform an
amount of arithmetic which is arguably unreasonable in practice. In contrast, a
human-voteable (also called barehanded [35]) voting scheme is one which does
not require any kind of computational device to vote (such as a trusted com-
puter).1 Vote-and-go refers to the fact that individual voters are not expected
to assist in any kind of post-ballot computations, such as computing the tally.
All major governmental elections today are have both properties. It is difficult
to see how a scheme that does not have both can escape being an impractical
academic exercise. While smartphones are ubiquitous, their use opens up new
attack vectors and is little better than trusting a polling machine or a physical
ballot counted by humans.

4 Protocol Components

4.1 Verifiable Secret-Sharing and Commitment

A (k, n) verifiable secret-sharing (VSS) scheme is a multi-party protocol between
a dealer and n shareholders that consists of two functions 〈Share,Recover〉. When
invoking share, the dealer distributes some secret string x among the shareholders
such that no subset of shareholders less than k can jointly output x and the
dealer proves that each share can be consistently used to reconstruct some secret
without an error. When invoking Recover, k or more shareholders combine their
shares to recover x (if less than k shareholders honestly contribute their shares,
⊥ is recovered instead).

The guarantees of a VSS scheme can be made information-theoretic while
tolerating up to k < n/2 malicious shareholders, assuming the existence of a
broadcast channel. A broadcast channel is already a standard assumption in an
E2E voting scheme. Many VSS schemes exist, each targeting different efficiency
metrics. For our purposes, we assume the use of a standard scheme due to Rabin
and Ben Or [34].

The relationship between a VSS scheme and a commitment function was
explored recently by Garay et al [20]. They observe that VSS is typically used
a distributed ‘analogue’ to a commitment scheme and prove that VSS realizes
a commitment-like properties. Informally speaking, the two main properties of
bit-commitment are binding and hiding, which respectively mean that the sender
can only open the commitment in one way, and that the receiver is unable to
distinguish between (chosen) committed messages m0 or m1.

The respective properties of VSS which will act as the binding and hiding
conditions are:

1 Note we do not refer to assistive technology (AT) that helps voters with disabilities
cast a vote—for this reason, we dislike the term barehanded. Rather we mean devices
that are trusted to perform a computation for the voter, not navigate an interface.



7

– If no strict majority of shareholder’s shares uniquely defines a secret, then
there will be an abort. In other words, the dealer is unable to either create
a commitment that they cannot open, or a commitment that can be opened
in more than one way.

– No strict minority subset of shareholders can reconstruct the secret, or pre-
vent an honest strict majority from reconstructing the secret. If a secret
fails to be reconstructed, then the faulty shares can be identified. In other
words, no strict minority subset of colluding sShareholders can change an
existing commitment, or prevent the honest shareholders from opening the
commitment.

– The secret will only be reconstructed when the majority of honest share-
holders come to an agreement. In contrast to a two-party bit-commitment,
the dealer is not involved in the opening process. Some pre-agreed condition
will trigger the honest shareholders to divulge their shares. In our case, they
are triggered by an auditor.

Concretely, given a (n,k)-VSS scheme, our commitment scheme will consist
of two function 〈Commit,Open〉 realized as follows.

– Commit(x): The dealer takes a secret x and invokes Share(x) with the share-
holders and proves that the shares are consistent. A failure of the secret-
sharing is considered a failure of commitment. If successful, the dealer an-
nounces a commitment identifier id to the shareholders used to identify the
commitment that should be opened. This identity is output as commitment
value c (in a standard commitment, c would be functionally dependent on
x).

– Open(c): The auditor sets id = c broadcasts to the shareholders Recover(id).
The honest shareholders follow the protocol to determine if the commitment
should be opened or not. If so, they execute the reconstruct protocol and
send to the auditor their shares, who reconstructs the secret. The honest
majority will identify any dishonest shareholders, whose shares the auditors
will ignore.

4.2 Eperio

Our voting protocol is based on the Eperio voting system [18]. Technically Epe-
rio is a backend component that can realizes a variety of voting systems. We
summarize some details of that protocol which we will augment with VSS in
Section 5.

Ballots. Eperio can utilize different ballot types. We use a ballot in the style of
Prêt à Voter (see Figure 1): a permuted list of candidates with a serial number.
The ballot is assumed to be physically unforgeable and is marked by the voter
and split along the dotted line. The candidate ordering is shredded, while the
mark position and serial number is optically scanned and then kept by the voter
as a privacy-preserving receipt. In Figure 1, we also show a tabular form of the
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Bob ut
Alice ut
Charlie ut

1234

U M S

1234.01 ut Bob

1234.02 ut Alice

1234.03 ut Charlie

Fig. 1: A Prêt à Voter ballot with 3 candidates. Each ballot has a randomly
shuffled order of candidates. Left side: the ballot as received by the voter. Right
side: an equivalent formulation of the same ballot information in tabular form.

ballot that is exactly equivalent. This form of the ballot could be printed out
and given to voters, however it would be a poor design relative to the ballot
form on the lefthand side of the figure.

The tabular form of the ballot consists of 3 columns and C rows, where C
is the number of candidates in the election. The first column, which we denote
by U, are Unique IDs which contains a unique ballot identifier and a choice
identifier. In the example ballot of figure 1, the ballot number is 1234 and the
suffixes identify each of the C markable positions on ballot 1234. So in this case,
markable position 1234.01 would count for Bob. On a different ballot, say 1235,
position 1235.01 might correspond to a different candidate.

The second column is the Marks List column, which we denote by M. In this
column, the voter places a checkmark at exactly one spot, indicating the row
corresponding to the candidate the voter wishes to vote for. The last column is
the Candidate Selection column, which we will denote by S. This is a list of the
candidates in a randomly permuted (per-ballot) order.

Eperio Tables. An Eperio table is a data structure that encodes the ballot
information. If you were to take every ballot in tabular form, concatenate them
end-to-end, you would end up with the ‘canonical’ Eperio table. This canonical
table is never used directly, but many (e.g., 20) instances of it are created which
are row-wise shuffles the table. In the original Eperio protocol, the U and S
columns are individually encrypted for each instance of an Eperio table prior to
the election to be used in the post-election audit.

Eperio Protocol. Prior to the election, a set of trustees use a blackbox device
(trusted for ballot secrecy but not integrity) to generate a canonical Eperio table
for an election with C candidates and V voters. All randomness used by the
blackbox is deterministically derived from seeds provided by the trustees. The
canonical table will be 3×CV. The canonical table is provided to the printers for
printing the ballots. As in almost all paper-based E2E voting systems, printing
is assumed to be a trustworthy process (at least with respect to ballot secrecy
— a print audit will establish the correctness of the printed ballots but cannot
distinguish between a malicious printer or honest printers being provide the
wrong information to print).
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A set of ` Eperio tables are generated by applying a random permutation to
the rows of the canonical table by the blackbox. ` is a security parameter where
an attack that moves a vote from Alice to Bob will be detected (given adequate
receipt checks and print audits) with probability 1− 2−`. The U and S columns
of each Eperio table is publicly committed prior to voting.

During voting, voters may request a ballot to be print audited (we defer to
the paper the discussion of the print audit — we can handle more simply in our
protocol). They then fill out their ballots for their selected candidates and have
the mark position portion of their ballot recorded (they can keep this lefthand
side of the ballot as a receipt). After the election, the trustees input into the
blackbox their random seeds and the scanned ballots (U and M). The blackbox
reconstructs all the tables and asserts an M column for each Eperio table. These
M columns and an assertion of the final tally is published.

After the results have been asserted, a random beacon is used to select an
`-bit string; one bit for each Eperio table. If the bit for a given table is 0, the
blackbox (again reseeded by the trustees) reveals the U column and if it is 1,
it reveals the S column (the M column for each is already public). For each
UM-revealed table, voters can check their receipt and everyone can check for
consistency across each table. For each MS-revealed table, anyone can check
that it matches the asserted tally. The specific reasoning for each of the three
possible audits can be found in [18]. For any particular committed Eperio table,
if only one of these combinations is opened, privacy is preserved.

5 Our Protocol

Our observation is that the encryption in Eperio is used as a commitment
scheme and can be changed to any type of commitments. The authors them-
selves make this observation suggesting that the perfectly-binding commitment
scheme (based on encryption) could be replaced with Pedersen commitments for
everlasting privacy. We observe here that the commitments could be replaced
with a VSS-style commitment to provide unconditional integrity and everlasting
privacy (but sacrificing universal verifiability). Our protocol is given in Figure 2.

Verification. In our protocol, voters may engage in three checks. The first is
a receipt check, which applies to any tables opened UM. External auditors
may also check with these tables that no ballot is over-voted. The second check
is a print audit, which applies to all rows in each table corresponding to a
print audited ballot opened UMS. The final check is the correctness of the
tally, checked with MS. Note all UM tables are shuffled but otherwise identical
versions of the same data, and likewise with all MS tables. The basic integrity
attack a malicious blackbox can conduct is changing the tally, which constitutes
moving marks in the M. However it must guess which tables will be opened UM
and leave these unmodified (or the moved marks will be detectable via a receipt
check), and guess exactly which tables will be opened MS to move the marks (or
the tally will be unmodified, or inconsistent across tables). The probability of



10

guessing correctly is 2−` where ` is the number of tables. For ` = 20 (a parameter
used in Scantegrity for effectively the same purposes), the probability of guessing
correct is less than a thousandth of a percentage. Importantly, this probability
is independent of the adversary’s computational power.

Discussion: Minimizing blackbox usage. The shareholders in our scheme are in-
volved in three phases of the protocol: (1) preelection to use the blackbox to
instantiate the election data, (2) after the election to use the blackbox to assert
the mark column for each table, and (3) after the challenge to open up the data.
In original Eperio, the blackbox must be used in all three steps. In our proto-
col, (3) can be accomplished by the shareholders directly without requiring the
blackbox. In a variation of our protocol, we could also eliminate the blackbox
from step (2). In step 2, the blackbox is required to permute a list of marks. The
shareholders could do this directly if in step (1), the blackbox gave them each (in
a specified order) a permutation to apply such that the composition of all these
permutations is the permutation that was used. The issue is that this requres
n-out-of-n shareholders in step (2) instead of k (however only k are required in
step 3).2

6 Proof of Security Sketch

In our security proof sketch, we will reduce a breaking of either privacy or in-
tegrity to the breaking of one or more properties of the VSS scheme. We assume
that the blackbox’s computations are unobservable, and that the broadcast and
private channels between shareholders are secure. In practice, these channels
need not introduce extra cryptographic (and hence computational) assumptions,
since they can be implemented as physical channels such as trusted couriers. In
short, breaking either privacy or integrity will imply that strictly more than
half of shareholders are malicious. Put differently, if a majority of shareholders
collude (violating our assumptions), then they can determine how each voter
voted (link ballot IDs to candidates voted for) and can modify the tally to any-
thing they want and have it accepted by the verification step. If the blackbox
assumption fails, the adversary can determine how each voter voted but cannot
undetectably modify the tally.

6.1 Privacy

It was shown in Eperio [18] that violating privacy reduces to a number of as-
sumptions including breaking the hiding property of the commitment. Since we
effectively only change the commitment scheme, we can ask ourselves: “If a cabal
of malicious shareholders, auditors and voters collude, can they break the hiding
property of the VSS-commitment?” Assuming, as always, that the number of

2 Future work might explore the possibility of giving each shareholder a matrix that
interpolates to the correct permutation matrix under the sequential composition of
any k-out-of-n interpolations.
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Pre-Casting

1. Voters register with a local election authority. Issues of voter registration fraud
are handled by the EA and are beyond the scope of this work.

2. The EA publishes the number of candidates C and number of ballots to print
(e.g., 2 · V where V is the voting age population and the scalar 2 allows for,
on expectation, one print audit per voter). The EA sets security parameter `.

3. The blackbox uses local randomness to create the canonical Eperio table
(which is provided to the printers) and ` permutations of it. It then uses
VSS to commit the permuted tables to the shareholders, cell by cell. Each ta-
ble’s format and index is published. Upon completion, the shareholders purge
the memory of the blackbox.

Vote Casting and Tallying

1. Voters show up and register at the designated voting locations. For each voter,
the EA will give the voter a paper ballot, such as the one in Figure 1, assuming
they have not voted already.

2. The voter may optionally choose to print audit the ballot. The scanner notes
the serial number and its status as audited. The ballot is voided for voting
purposes, and the voter is given the next ballot with the same option to audit
or vote.

3. Once the voter decides to vote, she marks her ballot and destroys the portion
of the ballot containing the candidate ordering. The other portion, containing
the serial number and marked position, is copied by the scanner and the
original is kept by the voter as a privacy-preserving receipt.

4. After the election, the scanners publish what they received: the M column of
the canonical table.

5. A quorum of at least k honest shareholders submit their shares of all tables to
the blackbox, which reconstructs the canonical table (by sorting each Eperio
table and checking for consistency). It also takes as input the scanner data. It
outputs an asserted M column for each of the ` tables and an asserted final
tally. The shareholders publish the output and purge the blackbox’s memory.

Audit

1. An unpredictable `-bit value is publicly generated by a beacon (e.g., using
stock prices [14]).

2. For bit i of the beacon value, a quorum of at least k honest shareholders
publish their shares of each cell in the U column in the i-th Eperio table if
the bit is 0, and each cell in the S column if the bit is 1. For print audited
ballots (only), they publish both the U and S cells.

3. The shareholders securely delete all unused shares.

Fig. 2: Our variant of Eperio using VSS.
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malicious shareholders is a strict minority, the answer to the above question is
no.

We do not pursue a full simulation-based proof but we comment that VSS-
commitments have an additional property that should streamline such a proof,
relative to the computational commitments used in Eperio. As a cut-and-choose
protocol, Eperio faces a standard problem of simulateability: as the challenge
space grows, the ability for the simulator to anticipate the correct challenge
decreases exponentially (if it rewinds the verifier, it must do it an exponentially-
increasing number of times which is not permissible). This can be side-stepped
by, say, letting the simulator program the beacon value (by running it through
a random oracle) or by repeating the protocol with one-bit challenges. In our
case, a VSS-commitment is effectively a trapdoor commitment scheme for any
majority of the shareholders. During the audit phase, the simulator can open a
commitment in such a way that is perfectly consistent with any tally constraints
imposed onto it.

Finally, we must also take care that each random choice (permutation in the
tables) is truly random and not the result of a deterministic random generator
(as in the original Eperio) or else the the permutations will not have a perfectly
uniform distributed (which could be distinguished by an unbounded adversary).
We modify Eperio along these lines — the shareholders do not contribute ran-
domness, rather they remember shares of the randomness used (in the form of
shuffled tables which can be resorted to recover the permutation).

6.2 Integrity

As in Eperio, the integrity of the election is reduced to a number of assumptions
including the binding property of the commitment. We have replaced the com-
mitment used by VSS, and in section 4.1 we have argued that VSS has properties
which corresponds to the binding property of a commitment scheme.

The auditing process remains the same. For each of the permuted Eperio
tables, an auditor will ask the shareholders to open the commitments in such a
way that corresponds to the three audits, as discussed in section 4.2. Assuming
that the number of malicious shareholders are strictly less than half, the VSS
binding property guarantees that they cannot change the commitment that has
been successfully executed.

In fact, let us suppose that the malicious shareholders can arbitrarily control
where the marks go in the permuted Eperio tables. However, since there is at
least one honest shareholder, the malicious shareholders do not know how to
consistently mark the votes. Therefore, with high probability increasing expo-
nentially to one in the number of Eperio tables, either a voter will detect that
his vote is inconsistent with his receipt when the U columns are opened during
the auditing process, or an auditor will discover inconsistencies across different
Eperio tables opened the same way. In either way, the malicious shareholders’
cheating is detected.
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7 Conclusion

We present a system, based on Eperio, that offers integrity and ballot secrecy
against computationally unbounded adversaries, regardless of whether such an
adversary is a voter, verifier, or election trustee. Further, our system enables
voters to cast paper-based ballots, such as an optical scan ballot overlay as
used in Scantegrity II or a permutation-style optical scan ballot as used in Prêt
à Voter. Once the ballot is cast, the voter may leave and does not have to
participate in tallying the election (in contrast to the other category of systems
providing unconditional security: boardroom voting schemes).

To be even-handed, we point out that our system introduces several draw-
backs. We rely on private and broadcast channels which, in practice, require
computational cryptography, thereby negating information-theoretic security.
We have argued that these channels may be implemented physically as untap-
pable channels and in fact, for elections such as the Scantegrity II municipal
election at Takoma Park, MD, election officials did meet in person in the same
room to set-up the election and to compute the final tally. Like other paper
ballot systems, the physical ballots are assumed to be unforgeable (therefore
malicious voters cannot repudiate a correct audit) and we trust the EAs to not
peek at the printed physical ballots before issuing them to voters (which would
break privacy). Both of these issues could be mitigated to a large extent by using
Scantegrity II ballots, however in Scantegrity II the scanner learns how the vote
was cast (as it is a cryptographic overlay and not a replacement system).

Most importantly in terms of drawbacks, our system removes the ability for
voters to independently verify the election results. They must trust that a ma-
jority of shareholders are honest. While we have no data on how many voters do
a full cryptographic check of the election results in a typical E2E-verifiable elec-
tion, we expect that many will already defer to someone else to check (whether
by running their software without validating it or simply believing their asser-
tions). That said, universal verification provides the agility to decide who you
trust after the election and even do it yourself if you do not adequately trust
anyone else who can perform the check. We are not advocating that uncondi-
tional security trumps universal verification, but we believe it is important to
provide viable solutions for both sides of this trade-off. This way, readers can
decide which is most appropriate for their election requirements.
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some incompatible properties of voting schemes. In Towards Trustworthy Elections,
2010.

14. J. Clark and U. Hengartner. On the use of financial data as a random beacon. In
EVT/WOTE, 2010.

15. R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret-
ballot elections with linear work. In EUROCRYPT, 1996.

16. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In EUROCRYPT, 1997.

17. D. Demirel, J. van de Graaf, and R. S. dos Santos Araujo. Improving helios with
everlasting privacy towards the public. In EVT/WOTE, 2012.

18. A. Essex, J. Clark, U. Hengartner, and C. Adams. Eperio: Mitigating technical
complexity in cryptographic election verification. In EVT/WOTE, 2010.

19. G. Gallegos-Garcia, V. Iovino, A. Rial, P. B. Ronne, and P. Y. A. Ryan. (universal)
unconditional verifiability in e-voting without trusted parties. Technical report,
IACR Eprint Report 2016/975, 2016.

20. J. Garay, C. Givens, R. Ostrovsky, and P. Raykov. Broadcast (and round) efficient
verifiable secret sharing. In ICITS, 2014.

21. S. Goldwasser and Y. Kalaj. On the (in)security of the Fiat-Shamir paradigm. In
FOCS, 2003.



15
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