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Abstract. We show how to combine the individual verification mech-
anism of Selene with the coercion-resistant e-voting scheme from Juels,
Catalano and Jakobsson (JCJ). This results in an e-voting scheme which
allows the voter to check directly that her vote is counted as intended,
but still allows her to mitigate coercion.
We also construct variants of the protocol which provide everlasting pri-
vacy or better verifiability. Further, both improvements of JCJ and Se-
lene are discussed.

1 Introduction

Remote e-voting gives voters the opportunity to conveniently vote from home,
work or even abroad. However, it also presents cryptographers with the diffi-
cult task of integrating both verifiability and privacy properties in a secure,
efficient and usable e-voting protocol. One of the hardest problems of leaving
the reassuring frame of a voting booth is to protect voters against coercion at-
tempts. Juels, Catalano and Jakobsson (JCJ) [JCJ05] found a way to provide
coercion-resistance across multiple elections, assuming only a single coercion-free
registration. The registration provides the voters with credentials which they use
for voting. Coerced voters can provide the coercer with a fake credential, and a
vote cast using this will not be counted. The system was later implemented as
Civitas [CCM08].

The JCJ-mechanism might be worrisome to the normal user. Was the creden-
tial entered correctly? Did someone else manage to override my vote? In the end,
it would be reassuring for the voters to be able to directly check that their votes
were counted correctly. However, providing voters with such a service endangers
the receipt-freeness and coercion-resistance if not done carefully. Fortunately,
Selene [RRI16] provides us with a mechanism for individual tallied-as-intended
verifiability while being able to mitigate the coercion threat. This is done by
giving each vote a unique tracking number, but first revealing this to the voter
after the tally has been published. Unfortunately, Selene was developed for He-
lios style protocols, but in this paper we will show that the construction can
also be applied to the coercion-resistant vote casting system from JCJ/Civitas.
Indeed we will consider different variants of JCJ and show how Selene can be
added to JCJ even in the case when we want to provide everlasting privacy via
pseudonyms, or when we offer better verifiability properties. We will also see
how to address the secure platform problem with the extra verifiability gained



from Selene. Along the way we will discuss some problems and solutions of the
JCJ construction with cross-election and dynamic coercion. Further, we will give
a more efficient construction of the zero-knowledge proofs needed in Selene.

1.1 Related work

Since the seminal paper defining coercion-resistance [JCJ05], there have been
numerous paper analyzing the JCJ protocol and providing alternatives, see e.g.
[NFVK13a] and references therein.

Selene [RRI16] is based on the idea of having trackers for the votes, an idea
already suggested in Schneier’s book [Sch94], which later independently also
appeared in a scheme used for ANR (Agence National de la Recherche) funding
committee meetings. Recently, sElect [KMST16] uses trackers to achieve good
accountability. However, in all of these cases the tracker directly represents a
receipt, whereas Selene mends this by delaying when the voter can obtain the
tracker.

The idea of everlasting privacy goes back to Moran and Naor [MN06] and
have been studied in several works, see e.g. [CPP13] for how to make perfectly
private audit trails in general election schemes, or [ACKR13] for how to do
automated verification of everlasting protocols. Here we focus on pseudonymity
rather than anonymity. However, if we follow JCJ closely, this is the best we can
do since the credentials themselves will be like pseudonyms to a future adversary.

The secure platform problem is one of the main problems in e-voting. One
solution is to use out-of-band channels and code-voting, see [Cha01,RT09]. In
e.g. Helios [Adi08] Benaloh challenges [Ben06] should help to detect malware,
but are unfortunately not often used [KOKV11]. Relying on hardware tokens is
yet another possibility, see [HK14,GRCC15], but is not always unproblematic,
see [KR16].

2 Building Blocks

Our construction uses the following building blocks: a non-interactive zero-
knowledge proof system (NIZK) [BFM88] in the random oracle model [BR93],
the ElGamal public key encryption scheme [Gam85], threshold encryption with
a plaintext equivalence test [JJ00], a verifiable re-encryption mixnet [SK95], the
Pedersen commitment scheme [Ped91], a web bulletin board [HL09], untappable
channels [HH07] and anonymous channels [Fre00].

3 System Model and Setup

We first describe the parties involved in an e-voting scheme.

Voters. The voters Vi (i = 1, . . . , n) register for voting, cast ballots, obtain
trackers and verify the voting results.

Tally Tellers. The Tally Tellers Tj tally the cast ballots and publish the results.
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Registration Tellers. The Registration Tellers RTk register voters.

Tracker Tellers. The Tracker Tellers TTl process trackers. They could be the
same parties as the Tally Tellers or the Registration Tellers, but they are
kept separate here due to the different trust assumptions.

Our e-voting scheme consists of the following phases.

Setup. In the setup phase, the parties generate secret and public keys. Each
voter creates a designated verifier key. The Tally Tellers generate a public
key pkT for a threshold encryption scheme.

Registration. In the registration phase, a voter Vi and the registration tellers
run a protocol. The designated verifier key dvki of Vi and pkT are used
as inputs. As a result of the protocol, the voter obtains a credential Ci.
Additionally, the voter identifier Vi, the key dvki and an encryption of Ci
under pkT are published on the web bulletin board (BB).

Tracker Preparation. In this phase, the Tracker Tellers and the voters run a
protocol. A set of trackers {ni}i=1,...,n, the designated verifier keys of the
voters and pkT are used as inputs. As a result of the protocol, each voter
obtains a Pedersen commitment to its tracker. Additionally, an encryption
under pkT of the tracker associated with a voter Vi is appended to the row
for voter Vi on the BB. In this protocol, the association between trackers
and voters is not revealed to any party.

Vote Casting. In this phase, a voter Vi computes a ballot and publishes it on
the BB. In our construction, the ballot contains an encryption under pkT of
the credential Ci and of the vote votei.

Tallying. In this phase, the Tally Tellers take as input the ballots published on
the BB and run a protocol to output pairs (votea, na), which associate each
valid vote with the tracker of the voter that cast that vote. Those pairs are
published on the BB.

Tracker Retrieval. In this phase, a voter Vi and the tracker tellers run a pro-
tocol as a result of which Vi learns the tracker n with which it became
associated in the tracker preparation phase.

Once a voter learns her tracker na, the voter can verify on the BB that the pair
(votea, na) is correct.

Setup. Let G be a cyclic group of prime order q and g be a generator of G. In the
setup phase, each voter creates designated verifier key dvki = gxi . The designated
verifier keys are used to provide deniability in the registration phase in JCJ and
the implementation Civitas. Additionally, we use the same designated verifier
key in the Selene construction as the public key for the ElGamal encryption
scheme. JCJ also suggest an alternative registration with an erasure function.
In that case we need a PKI as in Selene where dvki is the voter’s public key.

The Tally Tellers run the distributed key generation algorithm of the thresh-
old encryption scheme to generate a public key pkT and obtain each a private
share of the secret key.

3



4 Description of the e-voting protocol

In this section, we describe the protocol combining JCJ and Selene in detail.

4.1 Registration

The registration is quite similar to JCJ/Civitas. Each voter has a designated ver-
ifier key dvki. For each eligible voter Vi, each Registration Teller RTj randomly
picks Cij ←$ G and publishes {Cij}pkT on BB in a row marked for voter Vi.
As discussed in Section 7.1, we could instead use pseudonyms PVi if everlasting
privacy is desired.

For each voter, the encryptions are multiplied together to homomorphically
obtain a single credential Ci. On BB, we now have the following row for each
voter

Vi , dvki , {Cij}pkT ,
∏
j

{Cij}pkT = {Ci}pkT

Here we deviate from JCJ/Civitas by also including the public key dvki in the
row. This key will be the public key used by the voter in Selene.

The voter now receives the credential shares and designated verifier proofs
from the Registration Tellers

RTi → Vi : Cij , πij

where πij is a designated proof to the key dvki proving that {Cij}pkT , appearing
on BB, is an encryption of Cij . The voter can now calculate Ci and check the
proofs.

If the voter is coerced, she chooses at random an alternative value C ′i in
G and shows this to the coercer. The proofs can be faked with her designated
verifier key. It is here of course essential that the voter knows the secret key,
but a coerced voter can even reveal this secret key to the coercer, as long as the
coercer does not cooperate with the registration tellers. It is important that the
coercer not be present by the reception of all Cij ’s. In general, we assume that
the coercer does not interfere in the registration process.

The credential can be reused for several elections, and could, in principle, be
obtained in booth by the registration authorities.

4.2 Tracker Preparation

Whereas the previous part was very similar to JCJ/Civitas, we now add the
main ingredient of Selene, namely, the personal voting trackers that each voter
can use to check her tallied vote.

The trackers {ni}i=1,...,n should be a negligible set of Zq (i.e. the chance of
a random element in Zq being a tracker is negligible).
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The Tracker Tellers first publish

ni , {gni}pkT

on BB, where the encryption is with trivial randomness. The trackers are sent
through a re-encryption mix and one anonymised tracker is added to each of the
voters’ rows to obtain

Vi , dvki , {Ci}pkT , {g
nπ(i)}pkT

where π is the permutation used for mixing. In the following we will suppress
π for easier notation. Note that, whereas credentials can be used for several
elections, this tracker mixing needs to be renewed for each election.

Further each Tracker Teller TTj randomly chooses rij ←$ Zq for each voter
and publishes

{dvkriji }pkT , {g
rij}pkT , Πij

where Πij is a non-interactive zero-knowledge proof that this is done correctly.
The proof is presented in the Selene protocol, see [RRI15], App. A. As in Se-
lene, the terms from each Teller are now homomorphically combined with the
encryption of the tracker, and we obtain a trapdoor commitment to the tracker

{gni}pkT
∏
j

{dvkriji }pkT = {gni dvkrii }pkT

with ri =
∑
j rij . This is appended to each voter’s row. Finally, the Tally Tellers

decrypt the trapdoor commitment to the tracker, gni dvkrii , for each voter.

4.3 Vote Casting

Vote casting is done like in JCJ. Here we follow Civitas. If voter Vi wants to vote
“votei”, she anonymously sends to BB

({Ci}pkT , {votei}pkT , π)

where π is a zero-knowledge proof that the vote is well-formed together with a
proof that Ci and votei are simultaneously known, which prevents vote copying.
To cast a vote in presence of a coercer, the fake credential given to the coercer
is simply used in place of the real one.

4.4 Improving the Coercion Resistance of JCJ

The JCJ protocol has a tally procedure which leaves room for certain coercion
attacks. Let us first remind ourselves how the tally procedure works. It relies
heavily on the Tally Tellers performing Plaintext Equivalence Tests (PETs) on
the encryption of the credentials, see e.g. [CCM08].

5



1. Zero-knowledge proofs of the cast ballots are checked, and invalid ballots are
removed.

2. Duplicates,i.e., ballots that use the same credential, are removed according
to the existing vote update policy. This is done using PETs among the
ciphertexts of the credentials in the cast ballots. This means that the coercer
cannot mark the vote with a chosen number of duplicates.

3. The list of ciphertexts of registered credentials is anonymized using a mix-
net. Further, from the list of valid ballots after duplicate removal, we likewise
use a parallel mix-net to anonymize the pairs of ciphertexts of credentials
and votes.

4. Unauthorized votes, i.e., ballots that do not use a registered credential, are
removed by performing PETs of the credentials from the cast votes with the
list of registered credentials.

5. The remaining valid votes can now be decrypted to reveal the tally.

The duplicate removal can in certain quite special situations give the coercer
unwanted information and correspondingly hinders coercion-resistance, as we
will now see. This was discovered, but not analyzed, in [Roe16]. The problem
appears when the coercion happens dynamically or across elections. Consider an
uncoerced voter who has already voted. The coercer now detects this somehow,
say by overhearing this or seeing this in the browsing history of the voter.1 The
coercer can now coerce the voter just before voting ends. The coerced voter now
gives the coercer a fake credential, and they can sit down and cast an, in fact,
invalid vote. However, in the duplicate removal phase, it will then be evident
that the credential was fake, since no duplicates are detected for the fake vote.
To circumvent this, all voters should start by casting fake votes if they want
to be prepared for later coercion threats, which seems pretty complicated. Note
that the protocol in [KHF11] actually does something similar to prevent board
flooding attacks on JCJ, but the cost is a statistical coercion-resistance.

Another case is a voter which was coerced in an earlier election and gave the
coercer a fake credential. At a later election, the coercer can now cast a vote
using this credential and check whether this will have duplicates in the duplicate
removal phase. If this does not happen, the coercer can conclude that either the
credential was fake, or that the voter did not vote in the latter election, which
might be improbable. This means that the coerced voter also needs to cast votes
using the fake credential even at elections after being coerced to be on the safe
side.

Note that it does not help to do a mix before performing the duplicate
elimination since the groups of ballots could still be marked by a certain number
of duplicates.

If vote updating is not intended, we can sidestep the issue by simply dropping
the step of duplicate removal. After anonymizing both the registered credentials
and the cast ballots, PETs are performed for each registered credential against

1 We can assume that coerced voters are careful to use only devices out of the reach
of the coercer or to delete browsing history, but this is more unlikely for uncoerced
voters.
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the cast ballots until the first match comes up. We then pick this as the vote
for the given credential. For the set of cast votes for a given valid credential this
will pick one in the set at random. The method thus reveals a minimum amount
of information, but makes vote updating harder to implement. Further it also
decreases verifiability as discussed below, but Selene helps here.

4.5 Tallying with Selene

Tallying with Selene requires a minor modification. First, all proofs are checked
and invalid votes are discarded. Then all cast pairs

({Ca}pkT , {votea}pkT ) 7→ ({Cπ(a)}pkT , {voteπ(a)}pkT )

are re-encryption mixed.
Further the pairs of registered credentials and tracking numbers

({Ci}pkT , {g
ni}pkT ) 7→ ({Cπ′(i)}pkT , {g

nπ′(i)}pkT )

from each voter’s column are re-encryption mixed in parallel. From each entry
in this anonymised list of credential-tracker pairs, the Tally Tellers do PETs
against the credentials from the anonymised list of cast votes. The first time we
get a positive match, the corresponding vote is decrypted (verifiably) together
with the corresponding tracker. If wanted, one can also do more elaborate PETs
(like in JCJ-Civitas), first removing all duplicate votes, possibly with some vote
update policy, as explained in Section 4.4.

The end result (after taking the discrete log of the trackers) is the Tally
Board of valid vote-tracker pairs

(votea, na) .

4.6 Tracker Retrieval

Finally, the tracker retrieval happens like in Selene. Each Tracker Teller provides
each voter with their share grij .

TTj → Vi : grij .

This happens according to some random time distribution a suitable time after
the tally has been published, see [RRI16].

The voter (or rather her device) combines these shares to get gri . Together
with the public trapdoor commitment gni dvkrii , the term gri forms an ElGamal
encryption of the tracker under the key dvki. The voter can now decrypt and
directly check that her vote appears correctly on the Tally Board.

Trackers can be faked in the case of coercion, just like in Selene. That is, the
voter finds the wanted fake tracker, n∗, on BB for the coercer’s choice of vote
and calculates (

g−n
∗
gni dvkrii

)x−1
i
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as the fake term to give to the coercer instead of gri . Here xi is the secret key
of dvki = gxi .

A potential attack would raise if an adversary, possibly colluding with all the
Tracker Tellers, could make a voter get a fake gri term that the voter decrypts
to a valid tracker different from the true tracker of the voter with non-negligible
probability. In [RRI15] it is proven that this is hard under a standard computa-
tional assumption.

5 More Efficient Zero-Knowledge Proofs in Selene

In the tracker preparation phase, the Tracker Tellers publish

{dvkriji }pkT , {g
rij}pkT , Πij

where the zero-knowledge proof was of the correctness of this construction, i.e.
that the two generators are raised to the same known power. However, the term
{grij}pkT is not really needed. In principle, it could be used for accountability if
the Tracker Teller tries to send a wrong grij to the voter. However, for deniability,
the Tracker Teller sends this term without any proof to the voter. This means
that there is no proof that the Teller sent a wrong message to the voter. Thus
we suggest to only publish

{dvkriji }pkT , Π
′
ij

where Π ′ij is a shorter zero-knowledge proof, showing that the ciphertext indeed
encrypts the key dvki to a known power. In a long version of this notem we
present this proof in details; it consists of 8 group elements in some group of
prime order p and of 6 elements of Z?p. We also prove in the long version that
the adversary, also in this case, even when colluding with all Tellers, only has a
negligible chance of constructing a fake term grij that makes the voter decrypt
to a valid tracker different from her real tracker.

6 Security assumptions and arguments for security

In this section we will briefly mention the trust assumptions for the voting au-
thorities and give brief explanations of why the different security properties hold.

6.1 Trust assumptions for the Tellers

– The Registration Tellers are trusted individually for coercion-resistance and
collectively for verifiability. For everlasting privacy via pseudonyms (see sec-
tion 7.1) they are individually trusted for everlasting privacy.

– The Tally Tellers are trusted collectively for privacy (and hence coercion-
resistance) and verifiability. A threshold version follows directly. We will
here assume that the verifiable reencryption mixes done it the protocol are
performed by the Tally Tellers, and that these are private if at least one
Teller is honest.
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– The Tracker Tellers are trusted collectively for privacy. They are trusted
individually for coercion-resistance since the voter needs to know which grij

to fake for the coercer (like for the Registration Tellers).

6.2 Verifiability

We assume that the voters keep their private designated verifier keys secret. An
adversary colluding with all the Registration Tellers can however still obtain the
credential of a voter, and cast votes on her behalf, violating at least eligibility
verifiability. The same can happen if the adversary and all the Tally Tellers
collude, see also section 7.2 below how to mitigate this risk.

However, if such grand collusion do not happen, the only ballots on BB
with a given voters correct credential are with overwhelming probability cast
by the voter herself. That the correct vote is now chosen in the tally is secured
by checking the zero-knowledge proofs of the verifiable PETs and verifying the
correctness of the mixes. Finally, the actual decryption of the vote can also be
verified.

The correctness of the individual verifiability of the Selene trackers, is very
similar to the original Selene construction. The verification of the first mix of the
trackers ensure that each voter gets a unique tracker, from the set of trackers.
The pairwise mix of registered credentials and trackers, together with verification
of the PETs ensure that this tracker is assigned to the voter’s cast vote. Again,
the correct decryption of the trackers can be verified. That the voters receive
the correct trackers with overwhelming probability is discussed above.

6.3 Vote privacy

If the Tally Tellers or Tracker Tellers collude they can easily break privacy.
Otherwise privacy of the mixes and encryptions will ensure privacy. In general,
ballot independence is ensured by the construction (at least if we do not do the
duplicate weeding) if we check the proofs of the PETs. This also means that even
if the Registration Tellers collude and can cast valid votes on behalf of voters,
this does not violate privacy.

6.4 Coercion-resistance vs coercion-mitigation

Coercion-resistance and, related, receipt-freeness is a harder problem. The point
is that even in the ideal version of the scheme, the voters will know exactly which
vote is theirs in the final tally by checking their unique tracker. This is intended
and gives the voter a reassurance of the correctness of the vote. However, each
voter knowing their unique tracker, does constitute a piece of information, not
obtainable in standard voting schemes, and which is not foreseen in standard
definitions of coercion-resistance and receipt-freeness.

Coerced voter however still have good options to mitigate coercion. They have
algorithms to both fake their credential and the term to obtain their tracker
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number. The difference to standard coercion-resistance crystallizes when the
voter shows a fake tracking number to the coercer, and it turns out to be the
coercer’s own tracker. This was analyzed in Selene [RRI15] where also several
alternative versions without this drawback were discussed, but at the cost of a
less clear Tally Board.

7 Extensions and Alternative Protocols

7.1 Everlasting Privacy via Pseudonyms

Privacy is easy to break for a future adversary who is able to break the employed
encryption, e.g. because the DDH assumption happens to be broken or simply
by the expected increase in computational power over time. In general, we think
about the future adversary as having unlimited computational power, but only
being active after the election using the data from BB.

A quick and dirty way to obtain everlasting privacy is to use pseudonyms.
I.e., instead of labelling the rows on the bulletin board with the voter IDs, we
use pseudonyms. We assume that only the Registration Tellers and the Tracker
Tellers know the relation between the pseudonyms, designated verifier keys and
the actual voter IDs. Especially, this information will not be public and not
available to the future adversary.

Of course, pseudonyms are not the best way to preserve privacy, especially
across elections. However, they are easy to implement with not too big usability
costs. In particular, the JCJ construction works with credentials, which to the
future adversary are just like pseudonyms labelling the voters, even though they
only appear under encryption. As we show now, we can also use the Selene
mechanism in this case with some modifications.

Registration with pseudonyms. In the registration phase, we mark the
voter’s row on BB with the pseudonym PVi instead of Vi

PVi , (dvki)
sij , {Cij}pkT ,

∏
j

{Cij}pkT = {Ci}pkT

Note that each Registration Teller also takes the public key of the voter dvki
and raises it to the random power sij before publishing it. For each voter, we
can now collect the terms

PVi , (dvki)
si =

∏
j

(dvki)
sij ,

∏
j

{Cij}pkT = {Ci}pkT ,

with si =
∑
j sij . The Registration Tellers now send both the credential shares

Cij , the random exponents rij , the pseudonym and the designated verifier proofs
to the voter

RTi → Vi : Cij , sij , πij , PVi
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where πij is a designated proof to the key dvki proving that {Cij}pkT , appearing
on BB, is an encryption of Cij . The voter checks the proofs and the validity
of the values sij . Further, the voter can now calculate Ci and si. For internal
purposes the voter can update her key to be (dvki)

si .
The reason for raising dvki to si is two-fold. The first reason is to blind the

public key from the future adversary. From (dvki)
si , it is information-theoretically

impossible to infer dvki. The second reason is to prevent the following verifiabil-
ity attack. Suppose that all registration tellers collude. They could then point
two or more voters to the same pseudonym and credential, which would only be
detected if the attacked voters unlikely compare pseudonyms. This would only
give one vote to the two voters. Note that this verifiability is outside the scope of
the JCJ assumptions, assuming at least one Registration Teller is honest. How-
ever, in [Roe16], it was shown that we can do better (see also below). However,
by knowing the exponentials, the registration tellers would need to know a dis-
crete logarithm relation between the attacked voters, which is infeasible by the
hardness of the discrete logarithm problem, if we assume that the PKI has been
set up properly.

The remainder of the protocol can now proceed as above with dvki replaced
by (dvki)

si . The future adversary will be able to relate a vote to the pseudonym
and (dvki)

si , but not directly to the voter. Note that the Tracker Tellers need to
know the relation between pseudonyms and voters to return the random terms
grij to the voters. Like the Registration Tellers they are thus also assumed not
to be colluding with the future adversary. This trust is one of the reasons to
distinguish them from the Tally Tellers.

7.2 Stronger Verifiability

In [Roe16], a version of JCJ-Civitas was presented which has stronger security
guarantees, and only changes the registration and voting procedure slightly. The
main point is that the voters know the discrete logarithm of their credential,
and this can be seen as a secret key. The cast ballots containing the encrypted
credential are basically anonymously signed using this secret key. This prevents
verifiability attacks where either all Tally Tellers or Registration Tellers are
corrupted. In that case, they know the secret credentials, and could cast valid
votes on behalf of any voter. If we use the duplicate removal step, which had slight
coercion-resistance problems, as discussed above, this attack could be detectable
by alert voters. However, even so, it could lead to unsolvable disputes about the
validity of the election, see [Roe16].

Selene can also be added to this version of JCJ just as for standard JCJ.
However, we can also create a new combination of JCJ and Selene where, post-
registration, the voters only have to handle a single key (actually, coerced voters,
of course, also need to handle the fake keys).

The registration works as follows. For a given voter Vi, all Registration Tellers
RTj choose random values cij ∈ Zq and publish {gcij}pkT on BB. The voter gets
cij from RTj together with a designated zero-knowledge proof to dvki, proving
the correct encryption of gcij .

11



The ciphertexts of the credential shares can now be multiplied together, but
are further multiplied by {dvki}pkT , which for verifiability is encrypted with
trivial randomness. Since ElGamal is homomorphic, the final ciphertext is an
encryption of the voter credential Ci = gci := g

∑
j cij+xi . However, in this case

the voter, and only the voter, knows the discrete logarithm, since the Registration
Tellers do not know the secret key of dvki.

In case of coercion, the voter will present the coercer with a random number
c′i and corresponding group element C ′i = gc

′
i and claim this is the real credential

– just like in JCJ, but now working with the discrete logarithms instead of the
group elements.

After registration, BB contains

Vi , {Ci}pkT

and the uncoerced voter only needs to store the discrete logarithm of Ci. We do
not demand now Vi to store dvki separately. The Tracker Tellers can mix and
add {gni}pkT to each voter as above, but the Tracker Tellers can now only work
with {Ci}pkT . Due to the homomorphic property of ElGamal, this is however
enough. To create the trapdoor commitment, the Tracker Teller TTj randomly
chooses rij ←$ Zq, and publishes for each voter

{Ci}
rij
pkT

= {Criji }pkT , Πij

where again Πij is a NIZKPoK that this is done correctly. We have here chosen
the version without publishing the encryption of grij , however this only changes
for the proof.

Observe that we need a proof that an ElGamal ciphertext is raised to some
known power and this accounts to a proof of knowledge of the randomness r in
a DH-tuple. A NIZKPoK for it can be obtaining by appying the Fiat-Shamir’s
heuristic to the Chaum-Perdersen’s proofs [CP93]. The coercion-resistance of the
public information follows from the DH-assumption observing what follows. Let
us assume for simplicity that there is only one teller. Then, the coercer can see
Cri g

n
i along with the ciphertext raised to r but not Ci and note also that the

voter does not know r. Thus, under the DH-assumption we can conclude that
this information consists of just random group elements.

By homomorphically multiplying {gni}pkT with all the {Criji }pkT , we get the
trapdoor commitment {gniCrii }pkT where the trapdoor key now is ci. The Tally
Tellers decrypt these commitments verifiably.

Vote casting follows [Roe16] and works like before. The voter casts

({Ci}pkT , {votei}pkT , π)

anonymously to BB. The difference is that the zero-knowledge proof now also
contains a proof of knowledge of the discrete logarithm in the encrypted creden-
tial, i.e. like an anonymous signature.

Tallying is just like before, and retrieving the trackers likewise. However,
for coerced voters, faking the random term grij is now different from standard
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Selene. The point is that, whereas in the standard case, the coerced voter will
hand out the real secret key of dvki to the coercer, in this case the coercer will
get a fake key C ′i = gc

′
i . The fake term gri is thus calculated as(

g−n
∗
gniCrii

)c′−1
i

since, when combining this with the commitment on BB, we get a ciphertext
which decrypts to the wanted tracker n∗ when we decrypt with the fake creden-
tial key given to the coercer. Actually, this construction is mildly better than
standard Selene for coercion. The reason is that, if the coercer somehow man-
ages to see the real term gri , this will decrypt to the voter’s correct tracker in
standard Selene, but here it will decrypt to a random number, since the coercer
is in the possession of a fake key. The voter can thus still claim that something
must have gone wrong, or the system is corrupted, whereas in standard Selene
the chance of this would be negligible. In real life, this is probably not a very
usable defense for coerced voters.

Note that, if Tracker Tellers are corrupted, they can reveal relations on the
credentials between voters from the decrypted commitments, since they know
the random coins used in the commitments. This is however less of a problem
in this version of JCJ since the discrete log of the credential is needed to break
verifiability, and the Tracker Tellers are anyway trusted for coercion-resistance.

7.3 On the Secure Platform Problem

One of the main problems of e-voting is the secure platform problem. Very often
this problem is ignored and the voter’s computing platform is considered safe.
An alternative useful approach is to use an out-of-band channel, e.g. using vote
codes on paper, see e.g. Pretty Good Democracy [RT09].

Instead of resorting to out-of-band channels, one can also try to secure the
device used by the voter, see e.g. [NV12] [NFVK13b] where simple smart cards
are used. These are further used to improve usability for the voter. One drawback
of dedicated hardware might be forced abstention attacks from local coercers,
who simply seize the device from the coerced voter.

Instead, we can try to spread the risk of malware attacks to two independent
devices, assuming that the adversary will not be able to control both. Further,
we keep these devices general, i.e., it could be smartphones or laptops and not
dedicated hardware. Keys could have backups on more devices if the voter is
afraid of forced coercion. Due to the setup with two different credential/keys,
the combination of JCJ and Selene (with two credential/keys) seems ideal for
this task.

Let us assume that the voter has two computing devices D1 and D2. We
store the secret key of the designated verifier key dvki on D2. The voter now
uses device D1 for the registration where the voter gets the credential from
the registration. The credential is then stored on D1, and possibly with secure
backups. Note that, during registration, only the public key dvki is needed, thus
device D2 can be excluded from this process.
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A coerced voter can provide fake proofs without using device D1, i.e., by only
using the secret key on device D2. Thus device D2 does not learn the credential.

Vote-casting can be done on device D1 since it holds the credential, but does
not need device D2. Finally, tracker retrieval and vote verification can be done
on D2 without using D1.

In order to perform an undetected change of the vote, an adversary needs to
infect both device D1 to get the correct credential, and device D2 in order to
fake the verification of the final tallied vote with the Selene mechanism. Since
the devices could be very independent, e.g. the check of the final vote could even
be done on some public PC (with a threat of a privacy attack, of course), this
seems to greatly reduce the danger from malware.

7.4 Using JCJ to Improve Selene

The combination of JCJ and Selene cannot only be used to add extra verifiability
to JCJ, but can also provide a more secure tracker retrieval in Selene. The point
is that the voter can authenticate herself with her credential. We can use this to
make the tracker retrieval active. That is, instead of the Tracker Tellers sending
out the grij terms, with the risk of the coercer intercepting the message, the voter
contacts the Tracker Tellers to obtain the terms. We will here briefly sketch the
idea.

The voters can identify themselves to the Tracker Tellers with a ciphertext
of the credential. Here and in the following such encrypted credentials should
be followed by zero-knowledge proofs of plaintext knowledge of a special form
that makes sure that it is not copied from e.g. already cast election ballots, or
reused for ballots or authentication in later elections. For clarity we will suppress
these proofs in the following. The Tally Tellers can now perform a PET with the
registered credential (while also checking the zero-knowledge proof) to check the
authenticity. After authentication, the terms grij are handed out.

Coerced voters need to have a time window between the publication of the
tally board and the start of the tracker retrieval, where they can upload a fake
grij term to each Tracker Teller. They do this via an anonymous channel

Vi → TTj : Vi, {C1}pkT , {C2}pkT , {(g
rij )fake}pkT .

The first plaintext is supposed to be the real credential, the second plaintext the
faked credential and the third plaintext is the faked term that will be shown,
when someone with credential C2 tries to retrieve their tracker share. The Tally
Tellers need to be invoked to get this term. The fake term could also be sent in
plain, if the channel is considered untappable for the coercer.

Now, if a coercer tries to retrieve the random term, the voter should have
made a faking request beforehand, and the coercer gets the faked term.

However, we need to be careful since the coercer should not be able to use the
update mechanism to discover that he is in the possession of a faked credential.
We thus proceed as follows. After the time window, each Tracker Teller now has
a database for each voter with rows of faking requests (which might come the
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coercer as well). For understandability, we assume that each voter has maximally
one coercer, and we can then weed this list so that the value of the first credential
C1 can only appear once, copies are removed via PETs. A retrieval request now
takes the form of Vi , {C}pkT . The Tracker Teller now processes this request
via the following algorithm which has two memory slots. Before beginning the
ciphertext of the registered credential is loaded to memory slot 1 and the real
value grij is loaded to slot 2. For the given request it TTj requests a PET of the
submitted ciphertext with the value in memory slot one. If the PET is successful,
it hands out the stored value in memory slot 2 and exits the algorithm. If not,
it requests PETs against the database C1s and the value in memory slot one. If
there is no success, it hands out a random number and exits the algorithm, but
if there is a success it stores the corresponding C2 ciphertext in memory slot 1,
and the fake value in memory slot 2, deletes the database row and reiterates the
algorithm. The algorithm stops since the database is finite.

The coercer only has a negligible chance of guessing the real credential. Thus
with overwhelming probability, if the coercer asks for tracker retrieval, the al-
gorithm will after its first step to simulate that the credential, handed to the
coercer by the voter, is the real one with a corresponding faked term. In this way
the retrieval mechanism will act as if the coercer has a real credential. Note that
timing might be a side channel attack here, so some default delay is required in
the response time.

The advantage of the system is that also coerced voters can safely do verifi-
cation of their votes, the disadvantage is a rather complicated system, and the
voter still needs to be active to fake their trackers.

8 Conclusions and future work

We have shown that it is possible to use the Selene mechanism in JCJ, providing
an e-voting protocol where voters can individually check that their vote was
counted as intended, while still preserving a good level of coercion-resistance.
Further, several alternatives were presented providing: better verifiability (while
only handling a single key), everlasting privacy, a more secure tracker retrieval
and better protection against malware on the voters’ computing devices. Also
improvements to Selene, in terms of efficiency, and JCJ, in terms of coercion-
resistance, were presented.

This paper did not provide formal proofs of the security guarantees. These
are currently under consideration for the classical Selene protocol in the UC
framework, and should later be extended to also include this work.

Two main problems of JCJ were not touched upon, namely, efficiency and
usability. Regarding usability, Selene, in some sense is a step backwards. The
users (in the first version of the protocol at least) needs to handle two keys post-
registration. And coerced voter have to careful when they retrieve the trackers.
Further investigations are necessary to determine to which extent this can be
handled by the voter assisting devices, and if the extra clarity and trust given by
the check of the final vote will outweigh this. We however, also plan to increase
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the usability of JCJ in the future by allowing the voters to use short codes.
Finally regarding efficiency, the versions of JCJ presented here still suffer from
the tally time being quadratic in the number of voters, a problem we will also
try to solve in future a work.
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