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WTSC17!!Overview!
!
!
!
!
These!informal!proceedings!collect!the!papers!and!posters!accepted!at!the!1st!
Workshop! on! Trustable! Smart! Contracts! ! (WTSC17)! associated! to! the!
Financial!Cryptography!2017!conference!held!in!Malta!in!April!2017.!WTSC17!
focuses! on! smart! contracts,! i.e.! self^enforcing! agreements! in! the! form! of!
executable! programs! that! are! deployed! to! and! run! on! top! of! blockchains.!
These!technologies!introduce!a!novel!programming!framework!and!execution!
environment,! which! are! not! satisfactorily! understood! at! the! moment.!
Multidisciplinary!and!multifactorial!aspects!affect!correctness,!safety,!privacy,!
authentication,! efficiency,! sustainability,! resilience! and! trust! in! smart!
contracts.!WTSC17!aims! to! gather! together! researchers! from!both!academia!
and! industry!to!address!the!scientific! foundations!of!Trusted!Smart!Contract!
engineering,!i.e.!contracts!that!enjoy!some!verifiable!“correctness”!properties,!
and! to! discuss! open! problems,! proposed! solutions! and! the! vision! on! future!
developments.!!
! This! first! edition! of!WTSC17! received! nineteen! submissions,! of!which!
nine! were! accepted! as! full! papers! and! three! as! posters,! after! peer! review!
managed! by! a! Programme! Committee! featuring! members! from! academia,!
institutions! and! industry! from! eleven! countries,! who! kindly! accepted! to!
support!the!event.!Accepted!papers!will!be!published!with!Springer.!WTSC17!
also! enjoyed! an! invited! talk! by! Vitalik! Buterin! (Ethereum! Foundation),! a!
prominent!contributor! to! the!world!of!smart!contracts,!who!kindly!accepted!
our!invitation.!!
!
!
!
!
! Andrea!Bracciali!
! Federico!Pintore! !
! Massimiliano!Sala!
!
! WTSC17!Organisers!
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16:00^17:20!
! A!Concurrent!Perspective!on!Smart!Contracts!
! Ilya!Sergey!and!Aquinas!Hobor!
! !
! An!empirical!analysis!of!smart!contracts:!platforms,!applications,!and!design!
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! Massimo!Bartoletti!and!Livio!Pompianu!
! !
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Blockchain and Smart Contract

Mechanism Design Challenges

WTSC17 Keynote Talk

Vitalik Buterin

Ethereum Foundation

Abstract. Arguably, the true genius behind the success of Bitcoin, Ethereum and similar

systems was not the specific design of their blockchain, or their use of algorithms that

resemble forms of distributed consensus in order to maintain security; rather, it is the

innovation of cryptoeconomics - the art of combining cryptographic techniques and eco-

nomic incentives defined and administered inside a protocol in order to encourage users to

(correctly) participate in certain roles in the protocol, and thereby preserve and maintain

certain desired properties of the protocol. I describe the key ideas in the abstract, then

apply them to Bitcoin proof of work, the Schellingcoin oracle, Casper, as well as describing

several key open problems in blockchain-based system design.
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Fostering Consumers’ Energy Market

through Smart Contracts

Ioannis Kounelis, Gary Steri, Raimondo Giuliani,
Dimitrios Geneiatakis, Ricardo Neisse, and Igor Nai Fovino

European Commission, Joint Research Centre (JRC)

Cyber and Digital Citizens’ Security Unit

Via Enrico Fermi 2749, 21027 Ispra, Italy

{firstname.lastname}@ec.europa.eu

Micro-generation is the capacity for consumers to produce electrical energy
in-house or in a local community. The concept of “market” indicates the pos-
sibility of trading the electricity that has been micro-generated among produc-
ers and consumers, where a user acting both as a producer and consumer is
called a “prosumer”. Traditionally, this market has been served by pre-defined
bilateral agreements between prosumers and retail energy suppliers. Until now,
electricity-generating prosumers have not had real access to the energy market,
which remains a privileged playing field for the institutionalised energy suppliers.

Indeed, the main options considered so far by the technical literature, were
completely centralised and their viability was challenged as they introduce addi-
tional management fees and costs and assume the intervention of a trusted third
party reducing once again the potential gains of end-users. New approaches
should be developed enabling end-users to have free access to the energy mar-
ket. In this regard we propose a solution that utilizes the advantages of using a
blockchain for handling automatically the energy exchange. According to our ap-
proach, self-generated electricity could normally be either consumed within the
house, accumulated in next-generation batteries for later use, or simply given
back to the grid, where, thanks to the distributed and pervasive nature of the
blockchain, the produced energy could be redeemed elsewhere.

Exploiting the potentialities of blockchains and distributed ledgers, with our
work we propose a solar energy production and distribution architecture that
uses smart contracts to support automatic and distributed energy exchange,
thus allowing the development of an energy micro-generation market more open
and fruitful, from an end-user perspective. More in detail we introduce a plat-
form named Helios that facilitates micro-generators to exchange energy freely
in a limited geographical area. In this setup a custom made Internet of Things
smart meter is used to account and register the micro-generated energy in the
blockchain, while the smart contract supports the monitoring and accounting of
energy exchange in terms of a financial transaction. The model has been imple-
mented and validated through an in-house developed test-bed composed by a
real physical energy infrastructure and the related control and ICT layers. To the
best of our knowledge, Helios is among the first solutions built on o↵ the shelf
devices and open source technologies, enabling prosumers to access the energy
market.



Scripting smart contracts

for distributed ledger technology

Pablo Lamela Seijas1, Simon Thompson1, and Darryl McAdams2

1 University of Kent, UK
{pl240,S.J.Thompson}@kent.ac.uk

2 IOHK
darryl.mcadams@iohk.io

Distributed Ledger Technology (DLT) o↵ers a way of maintaining a synchronised
log in a non-centralised, distributed way; notably, this allows the implementation of
cryptocurrencies and, more recently self-enforcing smart contracts. Bitcoin is the first
widely-used implementation of a cryptocurrency but it has very limited scripting capa-
bilities in practice. Ethereum allows smart contracts to contain arbitrary time-bounded
turing-computable code that is executed and validated in a virtual machine. Nxt moves
scriptability to clients and provides a delimited functionality through an API.

Because smart contracts can control money and potentially other assets, it is crucial
that they behave as expected, not only in normal conditions, but also when attacked by
malicious agents. In particular, contracts must be reentrant if they call unknown code,
they must gracefully handle all kinds of execeptions, they must not expect agents to
collaborate (in some cases by including rewards and penalties to deter attacks).

Designers of smart-contract languages and cryptocurrencies may mitigate the like-
lihood of errors being made by their users by carefully designing them to be intuitive,
explicit, and by providing well-tested artefacts. Some examples of e↵ort in this direction
include: the use of zero-knowledge proofs for providing anonymity (see Zerocash); the
use of SNARKS to hide private inputs (Hawk allows to design contracts by separating
private and public parts); and allowing the use and enforcement of higher-level specifi-

cations, like the use of polymorphic types, combinators, finite-state machines (FSMs),
or domain specific languages (DSLs). Additionally, there are many open challenges that
are specific to DLT systems, like the design of ways for amending the rules (see Tezos),
the unpredictability of the initial execution state derived from the decentralisation, the
need for a safe source of randomness, the cost of validating the contracts (which could
be mitigated through the use of verifiable computation), the amount of work required
by proof-of-work (see proof-of stake), and the need to preserve the delicate equilibrium

of incentives that keeps block-chains secure.
In the full paper3, we provide references for all the work mentioned here, we sur-

vey these and other representative examples of the advanced use of cryptocurrencies
and blockchains beyond their basic usage as a payment method, and we analyse ex-
isting scripting solutions, their strengths and weaknesses, and some existing solutions
for known problems with them. Through our work, we have seen that, while there have
been many diverse e↵orts in di↵erent directions, there are still many open questions, no
universal solutions, and lots of room for future research and experimentation.

3 Pablo Lamela Seijas, Simon Thompson, and Darryl McAdams. Scripting smart contracts for

distributed ledger technology. 2016. URL: https://eprint.iacr.org/2016/1156.pdf

https://eprint.iacr.org/2016/1156.pdf


ZeroTrade: Privacy Respecting Assets Trading

System based on Public Ledger

Lei Xu, Lin Chen, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi

University of Houston, Houston TX 77004, USA

Motivation. Public ledger is a decentralized book keeping technology and is
believed to have the potential to revolutionize many areas. Besides handling
crypto-currency, public ledger can be used to tokenize arbitrary assets, and then
support trading of these asset tokens in a decentralized manner. With public
ledger based token trading system, users do not necessarily convert their assets
to currencies, but can exchange assets directly. It also avoids unnecessary trans-
portation as the asset only needs to be physically transferred to its last owner.
Furthermore, utilization of the public ledger does not require that users have to
trust each other in order to trade tokens safely. However, using decentralized pu-
blic ledger for trading asset tokens raises serious privacy concerns. Because token
ownership information is stored on the public ledger and disclosed to the public,
anyone can uncover users trading activities and history. For a token based asset
trading platform, all tokens are unique and transactions are usually two-ways
or multi-ways. In response to these challenges, we propose ZeroTrade, a privacy
respecting heterogeneous assets trading system that leverages various crypto-
graphy tools to conceal the exchange trace of asset tokens and takes advantage
of public ledger for guaranteeing fairness of asset token exchange.

Solution. ZeroTrade involves trusted hubs that are responsible for converting
assets to tokens and back, where trusted means that hubs will generate/accept
valid tokens, and uses the public ledger to record all token exchange information.
When two or more users want to exchange tokens with each other, each user picks
an agent for the exchange. Asset tokens are first poured into a pool and users
leverage agents to obliviously retrieve tokens from the pool in order to finish
the exchange. The oblivious retrieving process cut o↵ the connection between
the original user and the agent. Therefore, one cannot determine the relationship
between the original users who want to exchange tokens by observing information
recorded on the public ledger.

To implement the design, ZeroTrade leverages di↵erent cryptography tools
including zero-knowledge proof and various encryption techniques. Considering
various demands in token trade, ZeroTrade also supports operations like partial
token trade and revocation. A preliminary evaluation of the performance shows
that ZeroTrade only adds limited burden on top of the public ledger. More
detailed information can be found in the full version of the paper.

Conclusion. ZeroTrade provides a privacy friendly platform for asset trading
based on public ledger. For the next step, we plan to implement a fully functional
prototype and considering more complex token trading scenarios.
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Findel: Secure Derivative Contracts for

Ethereum

Alex Biryukov1, Dmitry Khovratovich2, Sergei Tikhomirov2

1 alex.biryukov@uni.lu

SnT, University of Luxembourg
2 {khovratovich,sergey.s.tikhomirov}@gmail.com

SnT, University of Luxembourg

Abstract. Blockchain-based smart contracts are considered a promis-
ing technology for handling financial agreements securely. In order to
realize this vision, we need a formal language to unambiguously de-
scribe contract clauses. We introduce Findel – a purely declarative fi-
nancial domain-specific language (DSL) well suited for implementation
in blockchain networks. We implement an Ethereum smart contract that
acts as a marketplace for Findel contracts and measure the cost of its
operation. We analyze challenges in modeling financial agreements in
decentralized networks and outline directions for future work.

Keywords: blockchain, smart contracts, financial engineering, domain-
specific language

1 Introduction

Financial derivatives – contracts defined in terms of other contracts – play a ma-
jor role in modern economy3. Financial industry lacks a universal domain-specific
language. Natural language is unsuitable for expressing contracts due to its in-
herent ambiguity. An influential paper [JES00] is one of many attempts to create
a rigorous DSL that would mitigate disputes and stimulate automated processing
of complex derivatives. It leverages ideas from functional programming and uses
a succinct set of basic building blocks to express financial agreements. A key fea-
ture of this notation is composability: new indefinitely complex derivatives can
be defined based on existing ones. Due to their nested structure, contracts in this
DSL are well-suited for automated processing, including valuation. The authors
do not specify an enforcement mechanism though: execution is performed by an
implicit environment. This work forms the basis for research [Gai11] [Sch14] and
commercial [FSNB09] [Mor16] projects.

The idea of smart contracts – computer programs for (semi-)automatic en-
forcement of agreements – dates back to mid-1990s [Sza97]. Blockchain networks,

3 The derivatives market is comparable in size to the world’s GDP. The gross market
value of all outstanding over-the-counter derivatives is $20.7 trillion [Bis16] (2016).
The world GDP in 2015 is $73,9 trillion [Wor16].



notably Ethereum, became the first practical implementation of this idea and
fueled interest in the concept [dC16]. Ethereum is a network of mutually distrust-
ing nodes, which nevertheless establish consensus on the results of computations
without the need of a trusted third party.

An obvious use case for blockchain-based smart contracts is to securely man-
age financial agreements. A naive approach to doing so is to encode the en-
tire logic of an agreement inside a smart contract. Expressing complex clauses
in a general-purpose programming language, like Ethereum’s Solidity, is error-
prone [ABC16] [Sir16]. We propose a safer approach that separates the descrip-
tion of a contract from its execution. A user only defines what a contract is (”I
owe you $10 tomorrow”), not how it is executed (”if the timestamp is greater
than t0, . . . ”). The entire execution logic is implemented inside a smart contract,
which is executed by nodes of a blockchain network. Thus we take the best of
both worlds: unambiguity and composability of a concise declarative DSL, and
trustless execution of blockchain-based smart contracts.

We introduce Findel (Financial Derivatives Language) – a declarative fi-
nancial DSL (Section 2) capable of expressing most common derivatives (Ap-
pendix A). We implement an Ethereum contract that manages Findel contracts
(Section 3) and prove our approach viable in terms of cost (Section 4).

2 Findel contracts syntax

2.1 Definitions

Definition 1. A Findel contract

4 C is a tuple (D, I,O), where D is the de-

scription, I is the issuer, and O is the owner (collectively called parties).

Definition 2. A description of a Findel contract is a tree with basic prim-

itives as leaves and composite primitives as internal nodes. The following
BNF grammar defines primitives:

hbasici ::= Zero | One ( hcurrencyi )

hscalei ::= Scale ( hnumberi , hprimitivei )

hscaleObsi ::= ScaleObs ( haddressi , hprimitivei )

hgivei ::= Give ( hprimitivei )

handi ::= And ( hprimitivei , hprimitivei )

hori ::= Or ( hprimitivei , hprimitivei )

hif i ::= If ( haddressi , hprimitivei , hprimitivei )

htimeboundi ::= Timebound ( htimestampi , htimestampi , hprimitivei )
4 We may refer to Findel contracts simply as contracts, when the distinction between
them and Ethereum smart contracts is clear from the context.



hcompositei ::= hscalei | hscaleObsi | hgivei | handi | hori | hif i | htimeboundi

hprimitivei ::= hbasici | hcompositei

We distinguish between composite and basic primitives, because the former
contain other primitives as sub-nodes while the latter do not. Currency, number,
address, and timestamp are implementation dependent data types. D and I can
not be modified after a contract is created.

A financial company typically has templates for common contracts. Parties
who wish to sign an agreement write their names on a copy of a template and
sign it, making it unique and legally binding. In our model, Findel contracts
represent signed copies while their descriptions represent blank templates.

Traditional contracts usually contain clauses that regulate sub-ideal situa-
tions, i.e., a breach of contract. Findel does not distinguish between ”ideal”
and ”sub-ideal” situations. All right and obligations are expressed uniformly.
Section 3.3 discusses issues related to contract enforcement.

Table 1 informally defines the primitives’ execution semantics.

Primitive Informal semantics

Basic
Zero Do nothing.
One(currency) Transfer 1 unit of currency from the issuer to the owner.

Composite
Scale(k, c) Multiply all payments of c by a constant factor k.
ScaleObs(addr, c) Multiply all payments of c by a factor obtained from addr.
Give(c) Swap parties of c.
And(c1, c2) Execute c1 and then execute c2.
Or(c1, c2) Give the owner the right to execute either c1 or c2 (not both).
If(addr, c1, c2) If b is true, execute c1, else execute c2, where b is a boolean value

obtained from addr.
Timebound(t0, t1, c) Execute c, if the current timestamp is within [t0, t1].

Table 1. Findel contract primitives

Table 2 illustrates the composability of Findel5.

2.2 Execution model

Findel contracts have the following lifecycle:

1. The first party issues the contract by specifying D, becoming its issuer.
This is a mere declaration of the issuer’s desire to conclude an agreement
and entails no obligations.

5
INF is a symbol representing infinite time, i.e., t0 < INF for every t0. � is an
implementation dependent constant intended for handling imperfect precision of
time signal in distributed networks.



Contract Definition

At(t0, c) Timebound(t0 � �, t0 + �, c)
Before(t0, c) Timebound(now, t0, c)
After(t0, c) Timebound(t0, INF, c)
Sell(n,CURR, c) And(Give(Scale(n,One(CURR))), c)

Table 2. Examples of custom Findel contracts

2. The second party joins the contract, becoming its owner. As a result, both
parties accept certain rights and obligations.

3. The contract is executed immediately as follows:
(a) Let the root node of the contract’s description be the current node.
(b) If the current node is either Or or Timebound with t0 > now, postpone

the execution: issue a new Findel contract with the same parties and the
current node as root. The owner can later demand its execution.

(c) Otherwise, execute all sub-nodes recursively6.
(d) Delete the contract.

The execution outcome is fully determined by description D, execution time
t, and external data S retrieved at time t.

2.3 Example

Suppose Alice sells to Bob a zero-coupon (i.e., paying no interest) bond that
pays $11 in one year for $10:

c
zcb

= And(Give(Scale(10,One(USD))),At(now+1 years, Scale(11,One(USD))))

We now show how c
zcb

is executed step by step.

1. And executes; Bob temporarily owns two new contracts:
Alice’s contracts
Alice’s balance 100

Bob’s contracts
Give(Scale(10,One(USD)))
At(now + 1 years, Scale(11,One(USD)))

Bob’s balance 10
2. Give executes; Alice owns a new contract:

Alice’s contracts Scale(10,One(USD))
Alice’s balance 100
Bob’s contracts At(now + 1 years, Scale(11,One(USD)))
Bob’s balance 10

6 In case of Or, execute exactly one of the sub-nodes, according to the owner-submitted
value indicating the choice; delete the other one. It is the only primitive that requires
an additional user-supplied argument for execution.



3. Scaled One transfers $10 go from Bob to Alice:
Alice’s contracts
Alice’s balance 110
Bob’s contracts At(now + 1 years, Scale(11,One(USD)))
Bob’s balance 0

4. In one year Bob claims $11 from Alice:
Alice’s contracts
Alice’s balance 99
Bob’s contracts
Bob’s balance 11

3 Implementation

We develop an Ethereum smart contract, referred to as marketplace, that keeps
track of users’ balances and lets them create, trade, and execute Findel contracts.
The Findel DSL is network-agnostic and can be implemented on top of any
blockchain with su�cient programming capabilities.

3.1 Ethereum overview

Ethereum is a decentralized smart contracts platform [But14] [Woo14]. Ethereum
full nodes store data, perform computations, and maintain consensus about the
state of all accounts using a proof-of-work mechanism similar to that in Bit-
coin. Programs (Ethereum smart contracts) are stored on the blockchain as
Ethereum virtual machine (EVM) bytecode, a Turing-complete language. Pro-
grammers write contracts in high-level languages targeting EVM, most popular
being Solidity and Serpent (we use the former).

A contract can call other contracts’ functions and send them units of Ether
– the Ethereum native cryptocurrency. To launch a particular function of a
contract, a user must send a well-formed transaction to the Ethereum network.

Each EVM operation has a fixed cost in gas. A user pays upfront for the
maximum amount of gas the computation is expected to consume and gets a
partial refund after a successful execution. If an exception (including ”out of
gas”) occurs, all changes are reverted, but the gas is not refunded.

3.2 Implementation details

Users and balances We implement the objects defined in Section 2.1 with
struct data types Description and Fincontract. We also introduce the User

type that contains the user’s Ethereum address and balances in all supported
currencies. Users, descriptions and contracts are stored in their respective map-
pings (a generic key-value storage type in Solidity) in the marketplace’s storage.

The ultimate e↵ect of every financial agreement is changing the parties’ bal-
ances (with clauses specifying when and under what conditions it should occur).
We stick to a naive approach: each user is assigned an array of balances for each



supported currency. Although easily implementable, it introduces a single point
of failure: the marketplace holds users’ deposits.

The only primitive that actually transfers value is One. The enforcePayment
function implements its execution. It subtracts a given amount in a given cur-
rency from the issuer’s balance and adds it to the owner’s balance. Our current
implementation does not enforce any constraints on users’ balances that would
prevent them from building up too much debt.

Ownership transfer In addition to issuer and owner (see Definition 1), a
Fincontract contains an auxiliary proposedOwner field. On contract creation,
issuer, owner, and proposedOwner are initialized to msg.sender. To transfer
ownership, the owner sets proposedOwner either to the address of the proposed
new owner or to 0x0. Only the proposed owner can (but does not have to) join
the contract; 0x0 means anyone can do so7.

Data sources and gateways Ethereum contracts are intentionally isolated
from the broader Internet and can not pull data from the Web, as it can not be
consistently replicated [Gre16]. Asynchronous requests usually solve the problem:
a smart contract records an Ethereum event with request parameters properly
encoded. A daemon process at an Ethereum node listens for such events, parses
requests, and sends them to the Web. The responses are then sent to the re-
questing smart contract on behalf of an Ethereum account a�liated with the
daemon. The submitted data may be accompanied by a proof of authenticity
(say, digital signature on a pre-approved public key)8.

Financial derivatives often use external data. To prevent a malicious or care-
less user from creating a Findel contract using untrusted sources, we need to
guarantee data authenticity.

Definition 3. A gateway is a smart contract that conforms to the API:

– int getValue() Get the latest observed value9.

– uint getTimestamp() Get the timestamp at which the latest value was
observed.

– bytes getProof() Get the authenticity proof for the latest value.

– update() Update the value.

7 Beware of front-runners: Bob can monitor the network and try to join a contract
as soon as he sees Alice’s attempt to do so. Depending on the network latency and
miner’s behavior, either transaction can be confirmed.

8 BTCRelay is a prominent example: users submit Bitcoin block headers to a smart
contract, which implies their authenticity from the validity of easily verifiable proof-
of-work. After a header is stored on the Ethereum blockchain, users check with a
Merkle proof that the Bitcoin block contains a given transaction.

9 For simplicity, we only consider 256-bit integers as observable values. Boolean values
can be trivially simulated via integers.



A gateway connects to an external data source and stores the latest value ob-
served along with the time of observation, and, optionally, a cryptographic proof
of authenticity. We do not specify the type of proof a gateway provides. Possible
options include Oraclize [Ora16] / TLSNotary [Tls16] and Reality Keys [Rea16].

The marketplace queries a gateway at execution time, if necessary. If the value
is fresh and the proof is valid, the execution proceeds, otherwise it is aborted
and all changes are reverted. Since a Findel contract may use multiple gateways,
the owner is advised to update them all shortly before execution.

A possible improvement would be for a gateway to store not only the latest
observed value, but a sequence of historical data. This would allow for more
straightforward modeling of derivatives that depend on multiple data points,
such as barrier options (execute either c1 or c2 depending on whether an observ-
able value touches a pre-defined threshold between acquisition and maturity).

We assume that the original data sources (e.g., feeds of reputable finan-
cial media) are trustworthy. An extra safety catch would be to query multiple
sources, exclude outliers and return an aggregated value. Authenticity of data
sources is guaranteed by a secure connection (e.g., TLS) and the existing PKI for
authentication ([CF14] and [LC16] propose blockchain-based PKI architectures).

Gateways without publicly available source code should not be trusted.

Execution implementation The executeRecursively function implements
the execution logic defined in Section 2.2 and returns true if executed completely
(without creating new contracts) and false otherwise. The execution of an
expired contract (t0 < now) returns true unconditionally10 and deletes the
contract11. Every step in the life cycle of a Findel contract issues a system-wide
notification (Event), allowing users to keep track of contracts they are interested
in.

Our implementation deviates from the model (Section 2.1) in that the exe-
cution of contracts is not guaranteed. Ethereum contracts can not act on their
own: the owner must issue a transaction to trigger execution. The owner may be
unable to do so due to either opportunistic behavior, or technical problems, such
as loss of connectivity or lack of ether. Thus we presume that Findel contracts
are not guaranteed to execute12. We discuss this issue in Section 3.3.

We model unbounded Findel contracts (i.e., with INF as the upper time
bound) using a global expiration constant inside the marketplace contract. Ev-
ery Findel contract in the Ethereum implementation can only be executed within
expiration time units after creation (e.g., 10 years).

10 By definition, an expired contract is equivalent to Zero.
11 An expired contract should also be deleted even if its owner is o✏ine forever. Our

current implementation does not handle the latter case, though it may be consid-
ered an attack vector due to increasing storage usage. A possible approach is for a
marketplace to o↵er rewards for keeping track of expired contracts and triggering
their deletion.

12 Compare to [JES00]: ”If you acquire (c1 or c2) you must immediately acquire either
c1 or c2 (but not both)”. We can not force a user to make this decision.



3.3 Possible improvements

We now discuss the shortcomings of our model and ways to improve it.

Enforcement As mentioned in Section 3.2, Findel contracts are not guaranteed
to execute. At first sight, it is a major problem, as contract must impose obli-
gations on parties. In traditional finance, a trusted third party and, ultimately,
the state law enforcement are responsible for punishing violators. The closest we
can arguably get to enforcement is a conditional penalty implemented inside a
Findel contract itself.

Assume Alice issues and Bob joins the following contract:

C = Before(t0,Or(Give(One(USD)),Give(One(EUR))))

C obliges Bob to give Alice either $1 or e 1 before time t0. If Bob fails to make
a choice on time, Alice does not get the money she was planning to receive13.
To prevent it, Alice attaches a ”penalty” clause:

P = After(t0, If(cexecuted,Zero, Scale(2,One(USD))))

c
executed

is the address of a gateway that indicates whether a particular
Findel contract was executed. When Bob joins C

penalty

= And(C,Give(P )),
Alice obtains the right to claim $2 from Bob if he fails to fulfil his obligations.

Note that C
penalty

references C
executed

, which in turn must be aware of
C

penalty

. Thus the gateway should be either adjustable (with Alice tuning the
gateway with a special transaction) or generic (reports the state of a Findel
contract taking its id as an argument).

Defaulting on debt A concise financial DSL does not prevent borrowers from
defaulting on their debt. It is up to a marketplace to solve this problem.

Requiring a 100% guarantee deposit seems safe, but is questionable from an
economical standpoint. People and organizations borrow money to invest it. The
no-arbitrage principle states that there is no guaranteed way to make a profit.
The investor reward, e.g. interest, is the premium for taking the inevitable risk
of business failure. Thus, this approach hardly makes economical sense.

A marketplace can also mimic the fractional reserve banking model by re-
quiring users to always be able to pay at least n% of their debt and punishing
violators (e.g., by withholding their guarantee deposit). It does not solve the
problem of defaults completely though. In legacy finance, users have a fixed
government-issued identity, allowing banks to maintain a common database of
their credit history. In a decentralized setting, users can create a practically in-
definite number of identities. A production-ready marketplace should therefore
take measures to combat Sybil attacks.

13 In this particular case, an equivalent contract Give(Or(One(USD),One(EUR)))
solves the issue. In more complex cases this is not necessarily the case.



Modeling balances with Tokens A more refined approach to modeling users’
balances is to use tokens – a de-facto standard API [Tok16] for implementing
transferable units of value in Ethereum. Tokens are primarily used to represent
company shares during so-called initial coin o↵erings [Ico17]. We assume that
tokens can be freely exchanged to any currency the marketplace operates with.
Given the address T of the Ethereum token contract, any Ethereum contract
can query the balance of any user U , and transfer its tokens (if it has any) to
an arbitrary address. Suppose Alice and Bob are token holders. Alice calls a
standard API function approve to allow Bob to withdraw a certain amount of
tokens from her account. Bob later calls transferFrom to transfer the tokens.
The transfer succeeds if Alice has enough funds.

We suggest the following procedure. A Findel contract’s issuer approves the
marketplace with the number of tokens he is potentially liable with. The mar-
ketplace implements enforcePayment by calling transferFrom thus trying to
withdraw tokens from the issuer and send them to the owner. Certainly, for the
execution to complete, the owner must either have enough tokens in the account,
or execute another Findel contract to fill it up. Thus we delegate the banking
functionality to the token smart contract and free the marketplace from holding
and transferring money [Kho16].

Multi-party contracts We might want to extend the Findel contracts model
to support more than two parties. An example of a three-party contract is buying
a car with insurance. A user can only buy a car while simultaneously signing
an insurance contract. We can express the two contracts (buyer – car dealer,
buyer – insurance company) in Findel DSL, but executing them atomically is
non-trivial. A possible way would be to use a gateway that keeps track of the
state of Findel contracts. If insuranceSigned indicates whether a user joined the
insurance contract, then buying with insurance looks like this (assuming CAR
is a token representing the ownership over a car):

If(insuranceSigned,And(Give(Scale(P,One(USD)),One(CAR))),Zero)

Local client In order to communicate with a Findel marketplace, users need
client-side software. Besides communicating with the Ethereum network, it might
also implement other functions:

– Create and store Findel contracts locally.
– Calculate the current value and other properties of Findel contracts based on

assumptions about external data (e.g., the e / $ exchange rate is between 1.0
and 1.2) or valuation techniques such as the lattice binomial model [CRR79].

– Keep track of relevant Findel contracts and perform actions depending on
their state (e.g., if c1 gets executed, join c2).

– Store a predefined list of addresses of trusted gateways, similar to a list of
trusted certificate authorities in web browsers.



3.4 Platform limitations

A Turing-complete programming language does not mean that all a programmer
can think of can be implemented inside an Ethereum contract. Gas costs aside,
the Ethereum network architecture implies certain limitations.

Lack of precise clock Timing is important for almost all financial contracts.
Clock synchronization is a hard problem in decentralized systems, even more so
if participants can profit from manipulating timestamps. Blocks in Ethereum are
produced every 15 seconds; block timestamps provide causal ordering. Solidity
contains keywords for time units, but timestamps are ultimately controlled by
miners.

Imperative paradigm Functional programming paradigm is well suited for
developing embedded DSLs [Gib13]. The original papers by Peyton Jones et al.
as well as all existing implementations of their DSL use functional languages
(Haskell [JES00] [JE03] [vS07], OCaml [Lex00], Scala [Wal12] [Cha15]). In con-
trast, Solidity and Serpent are imperative. Functional languages for Ethereum
are in a very early stage of development [FpE17].

Underdeveloped type system Ethereum supports neither decimal nor floating-
point types14, which often model amounts of money and currency exchange rates
respectively. The only numeric data types in Solidity are integers of various bit
lengths. Moreover, Solidity lacks type parameters, which could be useful for
Gateways (i.e., Gateway<int>).

4 Gas costs

Every computational step in Ethereum is charged in terms of gas. Despite the
use of expensive permanent storage operations, the cost of running our imple-
mentation is not prohibitively high for a proof-of-concept.

We measure gas costs of managing common Findel contracts as assessed
by the Browser-solidity compiler [Bro16]15 for a marketplace supporting two
currencies (referred to as USD and EUR and not tied to any asset). The di↵erence
between transaction and execution cost is that the former includes the overhead
of creating a transaction (i.e., a call from a client) and the latter does not (i.e., a
call from another contract) [Rev16].

4.1 Setup and helper functions

Registering a user implies initializing the user’s balances to zero for all supported
currencies. For testing purposes, we implement a gateway that uses the current
timestamp as data source and calculates a single keccak256 hash as a dummy
authenticity proof.
14 A likely rationale: rounding issues break consensus.
15 Solidity version: 0.4.4+commit.4633f3de.Emscripten.clang



Operation Transaction cost Execution cost

Create a marketplace smart contract 2221599 1681095
Register a user 79462 58190
Check user’s balance 47667 26395
Get contract info 24407 959
Get description info 24706 1258
Update a gateway 36922 15650

Table 3. Cost of setup and helper functions (in gas units)

4.2 Managing common derivatives

In our measurements, we omit cases where parties split the execution cost. We
assume that the issuer only pays for contract creation and issuance whereas
the owner pays for the execution. For simple Findel contracts, two Ethereum
transactions (one from each party) represent the whole lifecycle of a Findel
contract. In more complex cases, when a contract executes in multiple steps, we
sum up all costs that the owner bears to execute it completely. We also do not
account for gateway update costs.

Operation Create and issue Join and execute

Tx cost Exec cost Tx cost Exec cost

One 184239 177967 58493 93602
Currency exchange (fixed rate) 663149 656877 101878 138430
Currency exchange (market rate) 300842 294570 59822 96196
Zero-coupon bond 373783 367511 143891 201750
Bond with two coupons 939566 933294 346871 477100
European option 519628 513356 278191 411103
Binary option 402359 396087 59826 96204
Table 4. Cost of handling Findel contracts for common derivatives (in gas units)

As of January 2017, the gas cost 10�9 ether per unit [Eth17]; the price of
ether fluctuated around $10 [Wor17]. That brings the cost of a typical Findel
contract operation (105 – 106 gas units) to 1.8 – 18 US cent.

5 Related work

[Sch13] and [Hvi10] review financial DSLs and related projects. [STM16] and [CBB16]
explore approaches to smart contract programming languages.

5.1 Composable contracts by Peyton Jones et al.

Our work is inspired by the composable contracts as defined in [JE03], from
which we borrow some of our primitives (Zero, One, Scale, And, Or). It turns out



though that this notation is not directly transferable to blockchain environments
(at least to Ethereum) due to the way it formalizes temporal conditions (when,
until). Blockchains di↵er substantially from traditional centralized marketplaces
in how they model conditions. For this reason we introduced If and Timebound
primitives to express causal and temporal conditions respectively.

5.2 Logic Portfolio Theory by Ste↵en Schuldenzucker

Ste↵en Schuldenzucker in [Sch16] proposes an axiomatic approach to proving
no-arbitrage relationships between contracts based on the notation from [JE03].
Using a rigorously defined algebra of contracts, he proves well-known financial
theorems, such as the put-call parity. Formal semantics of Findel can be intro-
duced using a similar approach. This would enable formal verification techniques
that could substantially increase confidence in the safety of our language.

5.3 Preliminary draft by Nick Szabo

Smart contracts pioneer Nick Szabo in [Sza02] presents ”a mini-language” that
can be characterized as a middle ground between programming and legal speak.
The basic building block is a right (e.g., to receive $100 now). Rights are com-
bined using well-defined operators (when, then, also, with – analogous to our
primitives) and performed depending on external events. Parties are assumed
to have a trusted source of real-world information. The language is not purely
declarative: contracts may perform calculations and save values in state vari-
ables, which allows for more flexibility16.

6 Conclusion

Smart contracts in public blockchain networks seem to be a perfect match for
modeling financial agreements. Their unique value proposition is trustless exe-
cution, which reduces counterparty risks. We introduced Findel – a declarative
financial DSL built upon ideas from previous research in financial engineer-
ing. Formalizing contract clauses using Findel makes them unambiguous and
machine-readable. We proved Ethereum to be a suitable platform for trading
and executing Findel contracts.

Nevertheless, the whole smart contract field is still in its infancy. Program-
mers who wish to implement a usable smart contract for handling financial
agreements need to be aware of the forthcoming challenges: from fundamen-
tal limitations of the blockchain network architecture to imperfect development
environment.

16 Szabo makes a case against state variables in general, stating that ”they should be
avoided unless utterly necessary”.
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– A zero-coupon bond: the owner receives $100 at t0.

Timebound(t0 � �, t0 + �, Scale(100,One(USD)))

– A bond with coupons: the owner receives $1000 (face value) in three years
(maturity date) and two coupon payments of $50 at regular intervals before
the maturity date.

And(At(now + 3 years, c
face

),And(At(now + 1 years, c
cpn

),At(now + 1 years, c
cpn

)))

where

c
face

= Scale(1000,One(USD)), c
cpn

= Scale(50,One(USD))

– A future (a forward17): parties agree to execute the underlying contract c
at t0.

Timebound(t0 � �, t0 + �, c)

– An option: the owner can choose at (European option) or before (American
option) time t0 whether to execute the underlying contract c.

Timebound(t0 � �, t0 + �,Or(c,Zero))

Timebound(now, t0 + �,Or(c,Zero))

– A binary option: the owner receives $10 if a predefined event took place
at t0 and nothing otherwise.

If(addr, Scale(10,One(USD)),Zero)

17 In traditional finance, a future is a standardized contract while a forward is not.
This distinction is not relevant for our model.
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Abstract. Smart contracts are one of the most important applications
of the blockchain. Most existing smart contract systems assume that for
executing contract over a network of decentralized nodes, the outcome in
accordance with the majority can be trusted. However, we observe that
users involved with a smart contract may strategically take actions to
manipulate execution of the contract for purpose to increase their own
benefits. We propose an agent model, as the underpinning mechanism
for contract execution over a network of decentralized nodes and public
ledger, to address this problem and discuss the possibility of preventing
users from manipulating smart contract execution by applying principles
of game theory and agent based analysis.

Keywords: Smart Contract, Blockchain, Public Ledger, Game Theory

1 Introduction

In recent years, there have been papers and articles focusing on improving our
understanding of blockchain based crypto-currency using game theory [7, 8,
16]. The assumption behind these crypto-currency systems, e.g., Bitcoin, is that
participating users are financially driven. If a user has no interest in gaining
rewards from the system (e.g., mining, executing contract), he/she has no in-
centive of staying in the system. Therefore, users should not be considered as
merely machines that have resources to execute the protocols of such system. By
nature, they are more like players/economic agents who attempt to maximize
their profits through participation. This motivates the use of game theory to
study blockchain-based smart contract and transaction systems. For instance, in
this line of research, a recent paper of Kiayias et al. studies mining as a game
in Bitcoin and analyzes the best strategy for users [7]. However, little research
has been done for understanding the behaviors of smart contract execution over
decentralized blockchain and public ledger under agent based model, which is
the main focus of this paper.

As such, we consider the strategic behavior of users in smart contracts. Briefly
speaking, a smart contract is a computerized transaction protocol that executes
the terms of a contract [19]. It could be viewed as a counterpart to a physical-
world contract in a decentralized system. Like a contract in the physical world,
a smart contract may specify di↵erent conditions and define the payo↵s for users



under each condition. The following is a simple example: if a random dice returns
0, then A pays one coin to B; if it returns 1, then B pays A one coin. Though
electronic commerce applications or contracts can be supported using centralized
systems, smart contract mostly relies on decentralized network of participants
where no single participant is necessarily trusted. A hallmark of smart contracts
is that enforcement is achieved through consensus.

A smart contract can involve multiple users/participants and large amounts
of crypto-currency. Thus, it has the potential to be more critical than mining
in pure crypto-currency systems (e.g., Bitcoin), in which only a fixed reward is
paid to successful miners. The amount of crypto-currency involved in a contract
may be many times and significantly higher than the cost of running the contract
itself. Therefore, users involved in a smart contract may strategically take actions
to maximize their own profits, which can cause significant problems and cast
doubt to the fundamental assumption of smart contract execution model based
on consensus or majority accepted outcome.

Considering the example mentioned above, suppose that A represents a set
of users. If the random dice returns 0, A has the incentive of lying and claiming
that it returns 1, and plays strategically according to the protocols of the system.
If the system applies Byzantine agreement protocols or alike to reach consensus,
then A plays as the set of malicious nodes in the Byzantine problem who attempt
to prevent a consensus on 0 (i.e., A tries to impose a consensus on the wrong
value 1 or prevent the entire system from reaching a consensus at all). If the
system allows temporary branches and uses the longest chain rule to eventually
resolve branches, then A adds a block containing the wrong value of the dice
and tries to make it into the longest chain. The strategies that A may take are
dependent on the protocols of the system. In this paper, we do not necessarily
restrict our attention to one specific protocol or one specific embodiment of
smart contract system. Therefore we do not specify the actions of A but rather
say whether A lies or not. When we say A lies, we mean A plays strategically to
produce contract execution outcome that favors him/her financially regardless
the true result of the contract. Otherwise, we say A does not lie or A tells the
truth - always producing or accepting the outcome based on truthful execution
of the contract. The goal of this paper is to discuss the possibility and feasible
strategies strategies to prevent users involved in smart contracts from lying or
manipulating contract execution outcome for personal financial gains.

It is worth pointing out that the risk of accepting the rogue outcome of
contract execution increases when a large percentage of nodes of a smart contract
system have direct or indirect financial involvement in a smart contract. Even for
contracts only directly involving few or just two participants, there is a possibility
that a subset of these directly involved participants can manipulate the outcome
by creating dependent contracts that distributes financial rewards to other nodes
of the system if they accept certain contract execution result, a form of bribing
in contract execution and outcome confirmation. There is no trivial solution or
prevention mechanism to this problem. In the worst case, every node may have
either direct or indirect conflict of interests in terms of contract execution. In



addition, the anonymous nature of smart contract users/accounts and crypto-
currency wallets make it almost impossible to detect conflict of interests when
comes to contract execution.

Our contributions. We suggest that participants of a smart contract based
system using blockchain and public ledger be considered as economic agents. As
a consequence, execution of smart contract over a network of untrusted nodes
using blockchain is better to be understood and studied under the framework of
agents with the assumption that their participation is motivated by self-interests
and financial benefits. When participants of a smart contract system (e.g., min-
ers, nodes for executing contracts) are involved in a smart contract, they may
have incentives and engage in negative behaviors (e.g., lying or manipulation)
to maximize their own interests. These include producing or accepting contract
execution outcome that favors themselves by ignoring or discarding results of
truthful execution of the contract. Furthermore, we discuss the feasibility of pre-
venting such behaviors through proper design of smart contract based systems.

We show that, in general, there is no guaranteed way to prevent users from
lying or engaging in bad behaviors in a smart contract system, and there exist
scenarios where lying on outcome of contract execution could be the dominant
strategy for a user (i.e., the user will lie regardless of the actions of other users).
To solve this problem, we introduce payment in the game, that is, we discuss the
scheme that can penalize a node by fining him/her some amount of coins if the
result of a smart contract execution is di↵erent from that of the majority. This
is a straightforward approach that works for many problems in game theory.
However, we show that, if all users are not only rational but also fall into a class
called superrationality, then there exist scenarios in which they will always lie
or behave badly regardless of how high the penalty or fine would be.

Our negative results rely heavily on the rationality assumption of the users
and participants of a smart contract system. However, rationality is a debatable
concept in game theory. There exists a line of research focusing on irrational
behaviors of people. It suggests that a person, even with perfect rationality of
himself/herself, might not fully trust the rationality of others. We show that
the problem changes significantly if we assume that users are not fully confident
in the rationality of others. We also characterize the amount of the penalty
that can prevent users from lying on contract execution outcome given that the
users’ belief in the rationality of others is reflected by some known probability
distribution.

The remainder of the paper is organized as follows: In Section 2 we give
a short review of smart contract and describe the problem we address in this
paper. Section 3 describes the agent model for smart contract execution over a
network of decentralized participants and the role of penalty. In Section 4 we
discuss the way to implement penalty in decentralized smart contract execution
environment. Section 5 discusses related work, and we conclude the paper in
Section 6.



2 Smart Contract and Problem Statement

We begin by defining smart contracts. The definition provided by Szabo in
1997 [18] is:

Definition 1. A smart contract is a set of promises, specified in a digital form,

including protocols within which the parties perform on these promises.

However, this definition potentially covers a broad range of already exist-
ing centralized and client-server based e-commerce systems (e.g., Ebay), which
fundamentally distinguishes from blockchain based smart contracts that rely on
a decentralized network of untrusted nodes/participants and crypto-currency
(e.g., Ethereum [1]). Blockchain can enforce smart contracts in a decentralized
way without assuming any single trusted party. This is especially attractive in
scenarios where users involved in a contract do not necessarily trust each other.
As long as the entire blockchain system is “trusted” as a whole, it is guaranteed
that execution results of a smart contract could be trustworthy. Most of exist-
ing works assume that when the majority of participating nodes in a blockchain
system are honest, the system is trusted.

However, the situation is more complex in reality. Each node of the blockchain
may adopt di↵erent action strategies for di↵erent smart contracts to maximize
their own interests. This makes smart contract execution process more like an
economic game. We use the definition of a normal form game by Osborne [13]:

Definition 2. A normal form game � consists of:

– A finite set N of players (agents).
– A nonempty set Qi of strategies available for each player i 2 N .
– A preference relation �i on Q = ⇥j2NQj for each player i.

We restrict our attention to normal form games in this paper. For simplicity,
when we say a game, we mean a normal form game.

A strategy qi 2 Qi is called a (weakly) dominant strategy for player i if no
matter what strategies are chosen by other players, choosing qi always gives i
an outcome that is not worse than any other strategy.

The agent model for smart contract. We consider the following model,
which we call an agent model for smart contracts. There is a smart contract
which involvesN users (players). Each user j has a weight wj . The smart contract
specifies a set of possible future states of the system, depending on which each
user either gains or loses coins (crypto-currency). For simplicity we assume that
there are only two possible states S0 and S1. If a state Si occurs (i = 0 or 1),
user j will get zij coins (specifically, if z

i
j < 0, then it means that user j loses �zij

coins). Once the smart contract starts to be executed, the state of the system is
unique and clear to all users/participants, and we call this state as the true state.
In a decentralized system for contract execution and confirmation, however, all
the users shall agree to a certain state based on which the smart contract is
executed; and this state may not necessarily be the true state because of the



agent assumption. We assume that every user will vote for/accept one state, and
if users who vote for/accept a certain state Si have a total weight at least ↵W

whereW =
PN

j=1 wj , then the smart contract will be executed based on the state
Si. We discuss, under the described agent model, the possibility of preventing
users from lying on contract execution outcome by voting for/accepting incorrect
state.
Remark on the model. A user may have di↵erent identities (pseudonyms)
in a public blockchain based smart contract system. For simplicity, in this pa-
per, we assume that each user owns exactly one identity, whereas identities and
users are used interchangeably. Depending on the protocols used in a blockchain
based contract system, parameters may have di↵erent meanings. For example,
if the system uses proof of work and longest chain rule (e.g., Bitcoin), then wj

corresponds to the computation power of user j, and voting for a state Si means
generating a block that executes the smart contract based on Si (this may yield
a branch, though), and keeping adding blocks to make it into the longest chain.
For ease of presentation, we assume that there are only two possible states S0

and S1. However, our result can be easily extended to the case where there are
more possible states.

3 An Agent Model for Smart Contract Execution with

Penalty

We start with the following simple observation.

Observation 1 In the agent model, voting for the state that the user most

prefers is the dominant strategy.

Consider an arbitrary scenario in which every user votes for S0 or S1. If user
j prefers S1 most and does not vote for S1, then he/she can simply switch and
vote for S1 instead. Switching only decreases the utility of j if originally S1 is
the state based on which the smart contract is executed, and after switching
it becomes S0. However, this is impossible. Hence the observation is true. Note
that if S1 is not the true state, then user j always lies.

A common approach that prevents agents from lying in a game is to introduce
payments. We consider the most straightforward way of adding the payment to
the agent model, that is, if a user votes for a state that is di↵erent from the
state based on which the smart contract is executed, he/she will be penalized,
i.e., he/she will be fined a certain amount of coins.

Adding payment might prevent some users from lying on execution outcome.
Specifically, if the number of extra coins that a user gets by outputting wrong
outcome or lying is less than the penalty, he/she may choose to vote for the
true state. However, it is still possible that users are lying no matter how large
the penalty is. Consider the following scenario: The true state is S0. There are
users who strictly prefer S1 than S0. Let U be the set of them and supposeP

j2U wj � ↵W . Focusing on users in U , there are two Nash equilibria, every



user in U voting for S0 or every user in U voting for S1. Consider an arbitrary
user j 2 U . When making his/her own decision, user j guess the decisions of
other players. If j is optimistic and assumes every other player in U are voting
for S1, he/she will vote for S1, otherwise if he/she is pessimistic and assumes
every other player in U are voting for S0, he/she will vote for S0. In such a
scenario, users may still lie. Furthermore, we have the following claim.

Theorem 2. In the agent model with penalty, if j is superrational and knows

that

P
j2U wj � ↵W , then no matter how high the penalty is, j will always lie.

We provide the definition of superrationality as follows.

Definition 3 ([6]). A player (agent) is called superrational if he/she has per-

fect rationality (and thus maximize his/her own utility), assumes that all other

players are superrational, and that a superrational player will always come up

with the same strategy as any other superrational player when facing the same

problem.

We remark that, superrationality is also called renormalized rationality in
literature. According to the definition, if j is superrational, then he/she assumes
that any other user in U would behave in the same way as he/she does, in this
case, he/she will always vote for S1, hence Theorem 2 is true.

Our above arguments show that, in general, introducing payment does not
prevent users from lying. There exist scenarios in which users lie regardless of
how high the penalty is. However, superrationality or rationality may not apply
to real world application scenarios. As we have discussed, the incentive of lying
relies crucially on a user’s belief in certain behaviors of others. Specifically, he/she
believes that other users are all rational. However, rationality itself is one of the
most debatable issues in game theory in the sense that it seems to contradict a
lot of laboratory experiments, which suggests that people often fail to conform to
some of the basic assumptions of rationality. The “Centipede Game” , which was
constructed by Rosenthal [15] in 1982, is one of the most well-known examples
that illustrate such a phenomenon.

The centipede game is carried out between two players, say, A and B in a
fixed number of rounds which is known to both players. Initially both A and B
own 1 coin. At the beginning of round i, let ai and bi be the number of coins
owned by A and B respectively. If i is odd, A makes the decision of yes or no,
otherwise, B makes the decision. If A or B decides on yes, then the game moves
to round i+1, ai+1 = ai+1, bi+1 = bi+1. If A or B decides on no, then the game
stops. If it is A that decides on no (i.e., i is odd), then ai+1 = ai+2, bi+1 = bi�1.
Otherwise it is B that decides on no, then ai+1 = ai � 1, bi+1 = bi + 2.

Assuming that A is rational and he/she believes the rationality of B, then A
will decide on no at round 1 and the centipede game ends at the beginning. The
reasoning is that at the last round regardless of whose turn it is, the decision
will be no. Therefore, at the second to last round the opponent will decide
no to make sure that the number of his/her coins does not decrease. Iteratively
carrying out this argument we get the conclusion. However, this does not coincide



with the experiment results. For example, McKelvey and Palfrey [10] reported
that only 15% of the players chose to end the game at the beginning in the
experiments they carried out. That means, in most of these experiments, people
do exhibit behaviors that contradict the traditional rationality assumptions in
game theory. More experimental results and discussions on the centipede game
and irrationality could be found in [11, 20].

The experimental results suggest that people often do not have fully trust in
the rationality of the others. Notice that even if player A has perfect rationality,
however, if he/she does not believe in the rationality of B, then A may still
choose to continue the centipede game. Users involved in a smart contract may
encounter a similar situation. Consider user j 2 U , whether j votes for S1 or not
depends on his/her belief in the other users. Following the studies on irrationality
in centipede game [2], we define the parameter ⌧j(k), which indicates user j’s
belief in a certain behavior of user k, that is, user j believes that with probability
⌧j(k), user k will vote for S1, and with probability 1� ⌧j(k), user k will vote for
S0. Based on such assumptions, user j’s decision is based on the following.

For k 6= j, we define Xk as a 0-1 random variable such that:

Pr(Xk = 1) = ⌧j(k), P r(Xk = 0) = 1� ⌧j(k).

Suppose user j votes for S1, then based on j’s belief, the probability that
the smart contract is executed based on S1 is Pr(

P
k 6=j Xk +wj � ↵W ). Let pj

be the penalty if the smart contract is executed based on S0, then the expected
reward of j by lying (voting for S1) is

z1jPr(
X

k 6=j

wjXj � ↵W � wj)� pj(1� Pr(
X

k 6=j

Xj � ↵W � wj))

= (z1j + pj)Pr(
X

k 6=j

wjXj � ↵W � wj)� pj

The expected reward of j by telling the truth is

z0jPr(
X

k 6=j

wj(1�Xj) � ↵W � wj) = z0jPr(
X

k 6=j

wjXj  (1� ↵)W )

Therefore, as long as

z0jPr(
X

k 6=j

wjXj  (1� ↵)W ) � (z1j + pj)Pr(
X

k 6=j

wjXj � ↵W � wj)� pj ,

is true, the rational user j will not lie. This means, if j does not fully believe in
the rationality of other users, then su�cient penalty can prevent j from lying.
Overall, the following is true:

Theorem 3. In the agent model with penalty, if a user does not fully believe

in the rationality of others, then a su�cient penalty can prevent him/her from

outputting incorrect contract execution outcome or lying.



4 Implementation of Contract Execution with Penalty

Penalty plays a central role in the agent model of smart contract execution as
shown in the previous section’s analysis. We discuss the enforcement of penalty
in this section.

There are several strategies to eliminate disagreement in blockchain branches.
These strategies are also used to determine smart contract execution results
when there is disagreement. Common rules include longest-chain which is used
by Bitcoin [12], and GHOST which is used by Ethereum [17]. No matter what
strategy is used, we add following functions to support penalty in a decentralized
smart contract system:

– Recording users’ choices. Existing blockchain systems usually records only
one identity for each block and ignores supporters of the block. Recording
supporters is necessary for implementing penalty schemes. When a user ac-
cepts a block, he/she should generate a signature of the block and broadcast
it to the network. Therefore, everyone can track users’ choices of the smart
contract execution outcome;

– Distribution of penalty. When a group of users supporting the wrong result
need to be penalized, users supporting the correct result can submit a penalty
request to the blockchain. The collected fine is distributed to them.

5 Related Work

We provide a brief overview on blockchain based smart contract and game theory
studies on these systems.

Ethereum is the most popular smart contract system [1]. It is based on
proof-of-work, but is planning to move to proof-of-stake. Luu et.al. proposed a
formal method to analyze Ethereum smart contracts to detect potential vulner-
abilities [9].

The consequence of decentralization is subtle. Garay [5] and Pass et al. [14]
showed that, several important security properties defined in the work of Nakamoto
[12] are true, given the assumption that the majority of mining power in the
Bitcoin system is controlled by the honest miners. Without such an assumption,
however, security is not guaranteed. However, the assumption itself is ques-
tionable. For example, in 2014, the mining pool GHash.io exceeded 50% of the
computational power in Bitcoin [3]. Thus, it becomes important to understand
the behavior of users that participate in the system and study mechanisms that
would motivate them to behave in an honest way.

There are a series of studies focusing on game theory aspects of users involved
in mining. From a game theory perspective, Eyal and Sirer [4] showed that even a
majority of honest miners is not enough to guarantee the security of the Bitcoin
protocol. Sapirshtein et al. [16] and Kiayias et al. [7] studies mining as a game
in Bitcoin and analyzes the best strategy of users.



6 Conclusion and Future Work

In this paper, we establish an agent based framework to model smart contract ex-
ecution over a decentralized network of nodes/participants using blockchain and
public ledger. In contrast to the commonly accepted assumption that smart con-
tract execution outcome accepted by the majority can be trusted, agent based
model of smart contract execution assumes that nodes may have incentive to
manipulate or lie on outcome of contract execution in return for personal ben-
efits or financial gains even they are not directly involved in a contract. We
observe that users who are directly or indirectly involved in a smart contract
may strategically take actions to manipulate smart contract execution outcome
(e.g., produce or accept outcome that favors their own interests). In accordance
with agent based model, we discuss the possibility of preventing users from en-
gaging in bad behaviors in terms of contract execution or lying on contract
outcome. We provide negative results for general smart contract execution mod-
els. We also show that if penalty is introduced in contract execution and assume
that users are not fully confident in the rationality of other participants, then
it is plausible to prevent users from lying on outcome or manipulating result of
contract execution. Furthermore, we believe that, irrationality is an important
subject that would contribute to better understanding of user behaviors in a
decentralized cryptocurrency or smart contract system. A systematic investiga-
tion of irrationality in the context of smart contract execution and consensus is
an important open problem. Another interesting open problem is whether it is
possible to use other mechanisms, rather than financial penalty, to prevent users
from lying on contract outcome when it favors them the most.
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Abstract. In this paper, we explore remarkable similarities between
multi-transactional behaviors of smart contracts in cryptocurrencies such
as Ethereum and classical problems of shared-memory concurrency. We
examine two real-world examples from the Ethereum blockchain and an-
alyzing how they are vulnerable to bugs that are closely reminiscent
to those that often occur in traditional concurrent programs. We then
elaborate on the relation between observable contract behaviors and
well-studied concurrency topics, such as atomicity, interference, synchro-
nization, and resource ownership. The described contracts-as-concurrent-
objects analogy provides deeper understanding of potential threats for
smart contracts, indicate better engineering practices, and enable appli-
cations of existing state-of-the-art formal verification techniques.

1 Introduction

Smart contracts are programs that are stored on a blockchain, a distributed
Byzantine-fault-tolerant database. Smart contracts can be triggered by blockchain
transactions and read and write data on their blockchain [38]. Although smart
contracts are run and verified in a distributed fashion, their semantics suggest
that one can think of them as of sequential programs, despite the existence of a
number of complex interaction patterns including e.g., reentrancy and recursive
calls. This mental model simplifies both formal and informal reasoning about
contracts, enabling immediate reuse of existing general-purpose frameworks for
program verification [5,16,31,32] that can be employed to verify smart contracts
written in e.g. Solidity [15] with only minor adjustments.

Although all computations on a blockchain are deterministic,3 a certain amount
non-determinism still occurs due to races between transactions themselves (i.e.
which transactions are chosen for a given block by the miners). We will show in
that non-determinism can be exploited by adversarial parties and makes reason-
ing about contract behavior particularly subtle, reminiscent to known challenges
involved in conventional concurrent programming.

In this paper we outline a model of smart contracts that emphasizes the
properties of their concurrent executions. Such executions can span multiple

3 This requirement stems from the way the underlying Byzantine distributed ledger
consensus protocol enables all involved parties to agree on transaction outcomes.
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blockchain transactions (within the same block or in multiple blocks) and thereby
violate desired safety properties that cannot be stated using only the contract’s
implementation and local state—precisely what the existing verification method-
ologies focus on [5, 32]. To facilitate the reuse of the common programming in-
tuition, we propose the following analogy:

Accounts using smart contracts in a blockchain

are like

threads using concurrent objects in shared memory.

Threads using concurrent objects in shared memory. By concurrent objects we
mean the broad class of data structures that are employed to exchange data be-
tween and manage the interaction of multiple threads (processes) running concur-
rently [20]. Typical examples of concurrent objects are locks, queues, and atomic
counters—typically used via popular libraries such as java.util.concurrent.
At runtime, these concurrent objects are allocated in a block of shared memory
that is accessible to the running threads. The behavior resulting from the threads
accessing the objects simultaneously—i.e. interference—can be extremely unpre-
dictable and thus extremely di�cult to reason about.

Concurrent objects whose implementation does not utilize proper synchro-
nization (e.g., with locks or barriers) can manifest data races4 under interference
leading to a loss of memory integrity. Even for race-free objects the observed be-
havior under interference may be erroneous from the perspective of one or more
clients. For example, a particular thread may not “foresee” the actions taken by
the other threads with a shared object and thus may not expect for that object
to change in all of the ways that it does change under interference.

Accounts using smart contracts in a blockchain. Smart contracts are analogous
to concurrent objects. Instead of residing in a shared memory they live in the
blockchain; instead of being used by threads they are invoked by accounts (users
or other contracts). Like concurrent objects, they have internal mutable state,
manage resources (e.g. funds), and can be accessed by multiple parties both
within a block and in multiple blocks. Unlike traditional concurrent objects, a
smart contract’s methods are atomic due to the transactional model of com-
putation. That is, a single call to a contract (or a chain of calls to a series of
contracts calling each other), is executed sequentially—without interrupts—and
either terminates after successfully updating the blockchain or aborts and rolls
back to its previous configuration before the call.

The notion of “atomicity for free” is deceptive, however, as concurrent behav-
ior can still be observed at the level of the blockchain:

– The order of the transactions included to a block is not determined at the
moment of a transaction execution, and, thus, the outcome can largely de-
pend on the ordering with respect to other transactions [27].

4 That is, unsynchronized concurrent accesses by di↵erent threads to a single memory
location when at least one of those accesses is a write.
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– Several programming tasks require the contract logic to be spread across
several blockchain transactions (e.g., when contracts “communicate” with
the world outside of the blockchain), enabling true concurrent behavior.

– Calling other contracts can be considered to be a kind of cooperative mul-
titasking. By cooperative multitasking we mean that multiple threads can
run but do not get interrupted unless they explicitly “yield”. That is, a call
from contract A to contract B can be considered to be a yield from contract
A’s perspective, with contract B yielding when it returns. The key point for
smart contracts is that contract B can run code that was unantici-

pated by contract A’s designer, which makes the situation much closer
to a concurrent setting than a typical sequential one.5 In particular, contract
B can modify state that contract A may assume is unchanged during the
call. This is the essence of The DAO bug [9], in which contract B made a call
back into contract A to modify A’s local state before returning [27]. However,
reentrancy is not the only way this kind of error can manifest, since:

– It is not di�cult to imagine a scenario in which a certain contract is used as
a service for other parties (users and contracts), managing the access to a
shared resource and, in some sense, serving as a concurrent library. As multi-
contract transactions are becoming more ubiquitous, various interference
patterns can be observed and, thus, should be accounted for.

Our goals and motivation. Luckily, the research in concurrent and distributed
programming conducted in the past three decades provides a large body of the-
oretical and applied frameworks to code, specify, reason about, and formally
verify concurrent objects and their implementations. The goal of this paper is
thus twofold. First, we are going to provide a brief overview of some known con-
currency issues that can occur in smart contracts, characterizing the problems
in terms of more traditional concurrency abstractions. Second, we are aiming to
build an intuition for “good” and “bad” contract behaviors that can be identified
and verified/detected correspondingly, using existing formal methods developed
for reasoning about concurrency.

2 Deployed Examples of Concurrentesque Behavior

Here we discuss two contracts that have been deployed on the Ethereum blockchain
that each illustrate di↵erent aspects of concurrent-type behavior. The BlockKing
contract, like many others on the Ethereum blockchain today, implements a
simple gambling game [2]. Although BlockKing is not heavily used, we study it
because it showcases a potential use of the Oraclize service [4], which is a service
that allows contracts to communicate with the world outside of the blockchain
and thus invites true concurrency. Since the early adopters of the Oraclize service
wrote it as a demonstration of the service and has made its source code freely
available, it is likely that many other contracts that wish to use Oraclize will
mirror it in their implementations.

The second example we discuss is the widely-studied bug in the DAO con-
tract [1]. The DAO established an owner-managed venture capital fund with

5 A better term would be “uncooperative multitasking” under the circumstances.
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more than 18,000 investors; at its height it attracted more than 14% of all Ether
coins in existence at that time. The subsequent attack on it cost investors ap-
proximately 3.6 million Ether, which at that time was worth approximately USD
50 million. The DAO employed what we call “uncooperative multitasking”, in
that when the DAO sent money to a recipient then that recipient was able to
run code that interfered (via reentrancy) with the DAO’s contract state that the
DAO assumed would not change during the call.

2.1 The BlockKing contract

The gamble in BlockKing works as follows. At any given time there is a designated
“Block King” (initially the writer of the contract). When money is sent to the
contract by a sender s, a random number j is generated between 1 and 9. If the
current block number modulo 10 is equal to j then s becomes the new Block
King. Afterwards, the Block King gets sent a percentage of the money in the
contract (from 50% to 90% depending on various parameters), and the writer of
the contract gets sent the balance.

Generation of good quality random numbers is often di�cult in deterministic
systems, especially in a context in which all data is publicly stored—and in
which there are financial incentives for attackers. Accordingly, BlockKing utilizes
the services of a trusted party, Wolfram Alpha, to generate its random numbers
using the Oraclize service. Assuming Oraclize is well-behaved, this strategy for
random number selection should be very di�cult for attackers to predict.

The code for BlockKing is 365 lines long, but the lines of particular interest
are given in Figure 1; line numbers here refer to the actual source code of the
contract as given by Etherscan [2]. The enter function is called when money is
sent to the contract. It sets some contract variables (lines 299–301) and then
sends a query to the Oraclize service (line 303).

The oraclize_query function raises an event visible in the “real world” before
returning to its caller, which then exits (line 304). In the real world the Oraclize
servers monitor the event logs, service the request (in this case by contacting
the Wolfram Alpha web service), and then make a fresh call into the originating
contract at a designated callback point (line 306 in BlockKing). Between the event
and its callback, many things can occur, in the sense that the the blockchain can
advance several blocks between the call to oraclize_query and the resumption
of control at __callback. During this time the state of the blockchain, and even
of the BlockKing contract itself, can have changed drastically. In other words,
this is true concurrent behavior on the blockchain.

What can go wrong? Suppose that multiple gamblers wish to try their luck
in a short period of time (even within the same block). The contract makes
no attempt to track this behavior. Accordingly, each new contestant will over-
write the previous one’s data (the critical warriorBlock and warrior variables)
in lines 299–301. When the callbacks do eventually occur, the last contestant
in the batch will enjoy multiple chances to win the throne curtesy of the ear-
lier contestants in that batch who payed for the other callbacks! The culprit is
lines 339–347 from the process_payment function, called as the last line of the
__callback function in line 309.
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293 function enter() {
294 // 100 finney = .05 ether minimum payment otherwise refund payment and stop contract
295 if (msg.value < 50 finney) {
296 msg.sender.send(msg.value);
297 return;
298 }
299 warrior = msg.sender;
300 warriorGold = msg.value;
301 warriorBlock = block.number;
302 bytes32 myid =
303 oraclize_query(0,"WolframAlpha","random number between 1 and 9");
304 }
305
306 function __callback(bytes32 myid, string result) {
307 if (msg.sender != oraclize_cbAddress()) throw;
308 randomNumber = uint(bytes(result)[0]) - 48;
309 process_payment();
310 }
311
312 function process_payment() {

...

339 if (singleDigitBlock == randomNumber) {
340 rewardPercent = 50;
341 // If the payment was more than .999 ether then increase reward percentage
342 if (warriorGold > 999 finney) {
343 rewardPercent = 75;
344 }
345 king = warrior;
346 kingBlock = warriorBlock;
347 }

Fig. 1. BlockKing code fragments [2].

Each time the process_payment function is called the least significant digit of
warriorBlock is computed and stored into the variable singleDigitBlock.6 Each
time the process_payment function is called by __callback he has a new chance
to match the random number in line 339. If the numbers do match, then that
final contestant is crowned on line 345.

2.2 The DAO contract

The source code for the DAO is 1,239 lines and markedly more complex than
BlockKing [23]. Since much has already been written about this bug (e.g. [9,27]),
we present in Figure 2 only the key lines. The problem is the order of line 1012,
which (via a series of further function calls) sends Ether to msg.sender, and
line 1014, which zeros out the balance of msg.sender’s account.

In a sequential program, reordering two independent operations has no e↵ect
on the ultimate behavior of the program. However, in a concurrent program
the e↵ect of a sequentially-harmless reorder can have significant e↵ect since the
order in which operations occur can a↵ect how the threads interfere. In the DAO,
sending the Ether in line 1012 “yields” control, in some multitasking sense, to
any arbitrary (and thus potentially malicious) contract located at msg.sender.

6 For reasons that seem rather strange to us, this modulus is computed very ine�-
ciently in lines 315–338 of the contract, which we elide to save space.
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1010 // Burn DAO Tokens
1011 Transfer(msg.sender, 0, balances[msg.sender]);
1012 withdrawRewardFor(msg.sender); // be nice, and get his rewards
1013 totalSupply -= balances[msg.sender];
1014 balances[msg.sender] = 0;
1015 paidOut[msg.sender] = 0;
1016 return true;
1017 }

Fig. 2. DAO code fragment [23].

Unfortunately, the DAO internal state still indicates that the account is funded
since its account balance has not yet been zeroed out in line 1014. Accordingly,
a malicious msg.sender can initiate a second withdrawal by calling back into the
DAO contract, which will in turn send a second payment when control reaches
line 1012 again. In fact, the malicious msg.sender can then initiate a third, fourth,
etc. withdrawal, all of which will result in payment. Only at the end is his account
zeroed out, after being paid many multiples of its original balance.

Previous analyses of this bug have indicated that the problem is due to re-
cursion or unintended reentrancy. In a narrow sense this is true, but in a wider
sense what is going on is that sequential code is running in what is in many
senses a concurrent environment.

3 Interference and Synchronization

Having showed that concurrent-type behavior exists and causes problems in
real contracts on the Blockchain, we will now examine other ways that our
concurrent-objects-as-contracts viewpoint can help us understand how contracts
can behave on the blockchain.

3.1 Atomic updates in shared-memory concurrency

Figure 3 depicts a canonical example (presented in a Java 8-like pseudocode) of
a wrongly used concurrent object, which is supposed to implement an “atomic”
counter with methods get and set. The implementation of the concurrent
counter on the left is obviously thread-safe (i.e., data race-free), thanks to the use
of synchronized primitives [17]. What is problematic, though, is how an instance
of the Counter class is used in the multithreaded client code on the right.

Specifically, with two threads running in parallel and their operations inter-
leaving, the call to incr() within thread2’s body could happen, for instance,
between the assignment to a and the call c.set(a + 1) within the incr() call of
thread1. This would invalidate the condition in the following assert statement,
making the overall program fail non-deterministically for a certain execution!

The issue arises because the implementation of incr() on top of Counter does
not provide the atomicity guarantees, expected by the client code. Specifically,
the code on the right is implemented in the assumption that there will be no
interference between the statements of incr(), hence the counter c is going to be
incremented by 1, and a and b will be the same by the end of its execution. Indeed,
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class Counter {
private int x = 0;

/** Return current value */
synchronized int get() {

return x;
}

/** Set x to be v */
synchronized int set(int v) {

int t = x;
x = v;
return t;

}
}

final Counter c = new Counter();

void incr() {
int a = c.get();
int b = c.set(a + 1);
assert (a == b);

}

// In the main method
Runnable thread1 = () ->

{ incr(); }

Runnable thread2 = () ->
{ incr(); }

thread1.run(); thread2.run();

Fig. 3. A concurrent counter (left) and its two-thread client application (right).

this is not always the case in the presence of concurrently running thread2, and
not only a and b will be di↵erent, the later call to c.set() will also “overwrite”
the result of the earlier one.

A better designed implementation of Counter could have instead provided
an atomic implementation of incr(), implemented via a version of fetch-and-
increment operation [20, § 5.6], via explicit locking, or by means of Java’s
synchronized keyword. However, given the only two methods, get and set, the
implementation of Counter has synchronization properties of an atomic register
whose consensus number [20, § 5.1] (i.e., the number of concurrent threads that
can unambiguously agree on the outcomes of get and set) is exactly 1. Therefore,
it is fundamentally impossible to implement an atomic incrementation of c by
using only get and set, and without relying on some additional synchronization,
by giving priorities to certain preordained threads.

Perhaps a bit surprisingly, even though the implementation of Counter from
Figure 3 is not flawed by itself, its weak atomicity properties render it quite
useless in the presence of an unbounded number of threads, making it virtually
impossible to make any stable (i.e., resilient with respect to concurrent changes)
assumptions about its internal state.

3.2 Atomic updates in concurrent blockchain transactions

The left part of Figure 4 shows a smart contract, implemented in Solidity [15],
with functionality and methods reminiscent to those of an atomic concurrent
counter. The function get allows one to query the contract for the current bal-
ance, associated with some fixed address id, whereas the set function allows one
to update balance with the new balance, taken from the message via msg.value,
sending back the old amount and returning it as a result.

Since the bodies of both get and set are going to be executed sequentially in
the course of some transactions, neither there is any need to synchronized them,
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contract Counter {
address public id;
uint private balance;

function get() returns (uint) {
return balance;

}

function set() returns (uint) {
uint t = balance;
balance = msg.value;
msg.sender.send(t);
return t;

}}

// ...
// Same code as in Counter

function testAndSet(uint expected)
returns (uint) {
uint t = balance;
if (t == expected) {

balance = msg.value;
msg.sender.send(t);
return t;

} else {
throw;

}
}

Fig. 4. A counter contract (left) and a synchronizing testAndSet method (right).

nor there is any explicit way to do so in Solidity. However, it is not di�cult
to observe that as an implementation of the simplest possible storage (e.g., for
some id-related funds), used by multiple di↵erent parties to update it’s balance,
the Counter contract is as useless as its Java counterpart from Figure 3.

For instance, imagine that two parties, unaware of each other try to increment
the amount, stored by an instance of Counter by a certain value. Since the con-
tract does not provide a way for them to do it in one operation, they will have
to first query the amount via get and then try to change it via set function,
following the same pattern as the implementation of incr from Figure 3. Indeed,
both these calls can be accomplished in a single transaction, which would make
the execution sequential. However, because of the limited gas requirement,7 it
is ill-advised to call more than one external contract in the course of execu-
tion. Furthermore, the call to get can be performed by a client, external to the
blockchain, which would mean that the consecutive calls to get and set will end
up in two di↵erent transactions. If this is the case, those calls might interfere
with other transactions, launched by multiple parties trying to modify Counter

at the same time, making us face the familiar problem: the result of calling the
function set cannot be predicted out of the local observations.

The cause of the described problem, both in the shared-memory and blockchain
cases, is the lack of strong synchronization primitives, allowing one to simulta-
neously observe and manipulate with the counter in the presence of concurrent
executions. One solution to the problem, which would make it possible to in-
crement the counter atomically, is to enhance the counter with the testAndSet

function (right part of Figure 4). This function implements the check/update
logic similar to the compare-and-swap primitive [20, § 5.8], (known as CMPXCHG,
on the Intel x86 and Itanium architectures), as a way to implement synchro-
nization between multiple threads. The consensus number of testAndSet (and

7 This is a standard way in Ethereum to ensure that execution of a contract terminates:
by supplying it with a limited amount of “gas”, used as a fuel for execution steps.
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contract Counter {
address public owner;
uint private balance;

modifier byOwner() {
if (msg.sender != owner) throw;
_

}

function get() external byOwner
returns (uint) {
return balance;

}

function set() external byOwner
returns (uint) {
uint t = balance;
balance = msg.value;
msg.sender.send(t);
return t;

}}

// Same declarations as in Counter

mapping (address => bool) readers;

// Initialized with 0x0
address writer;

modifier canRead() {
if (msg.sender != writer ||

!readers[msg.sender]) throw;
_

}

modifier canWrite() {
if (msg.sender != writer) throw;
_

}

function acquireReadLock() returns (bool) {
if (writer == 0x0) {

readers[msg.sender] = true;
} else return false;

}

// ... Other synchronization primitives

Fig. 5. An exclusively-owned (left) and Read/Write-locked (right) contract.

some other similar Read-Modify-Write primitives) is known to be 1, hence it is
strong enough to allow an arbitrary number of concurrent parties agree on the
outcome of the operation.

Notes on formal reasoning and verification. The modern formal approaches for
runtime concurrency verification, based on exploring dynamic execution traces
and summarizing their properties, provide e�cient tools for detecting the viola-
tions of atomicity assumptions, and the lack of synchronization [26]. For instance,
by translating our contract to the corresponding shared-memory concurrent ob-
ject, one would be able to use the existing tools to summarize its traces [13],
thus, making it possible to observe undesired interaction patterns.

4 State Ownership and Permission Accounting

A di↵erent way to prohibit the unwelcome interference on a contract’s state is
to engineer a tailored permission accounting discipline, controlling the set of
operations allowed for di↵erent parties.

Let us first notice that the problems exhibited by the two-thread example
in Figure 3 and preventing one from asserting anything about its state x could
be avoided if we enforced a restricted access discipline: for instance, by stating
that at any moment at most one thread can query/modify its state. This would
grant the corresponding thread an exclusive ownership [30] over the object, thus,
justifying any assertions made locally from this thread about the object’s state.

The unique ownership is traditionally ensured in Ethereum’s contracts by
disallowing any other party, but a dedicated owner, make critical changes in
the contract state. For instance, Figure 5 (left) shows an altered version of the
Counter contract, so no other party can interact with it but its “owner”. The
ownership discipline is enforced by Solidity’s mechanism of modifiers, allowing
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one to provide custom dynamically checked pre-/postconditions for functions.
In our example, the byOwner modifier will enforce that the functions get and set

will be only invoked on behalf of a fixed party—the owner of the contract.
This is a rather crude solution to the interference problem, as it would mean

to exclude any concurrent interaction at a contract whatsoever. It is quite il-
luminating, though, from a perspective on thinking of contracts as concurrent
objects, allowing us to immediately apply our analogy: accounts are threads.
Indeed, by imposing a specific ownership discipline on a contract as shown in
Figure 5 is similar to enhancing its Java counterpart with an explicit check of
Thread.currentThread().getId().

Let us now try to push the analogy between accounts and threads a bit further
by designing a version of a counter with more elaborated access rights. In partic-
ular, we are going to ensure that as long as there are accounts (aka “threads”)
“interested” in having its value immutable (as their internal logic might rely
on its immutability), no other party may be allowed to modify it. Similarly, if
at the moment there is exactly one party that holds a unique permission to
modify the counter, no other parties may be allowed to read it. The solution to
this synchronization problem is well-known in a concurrency community by the
name Read/Write lock [6]. Its implementation requires keeping track of threads
currently reading and writing to the shared object, so a thread should explicitly
acquire the corresponding permission before performing a read/write operation,
and then should release it upon finishing.

The right part of Figure 5 shows the essential fragments of the Read/Write-
locked contract implementation. The two new fields, readers and writer keep
track of the currently active readers and writers. The new modifiers canRead and
canWrite are to be used for the omitted get and set operations correspondingly.
Finally, acquireReadLock allows its caller to acquire the lock as long as there is
no active writer in the system, by registering it in the readers mapping.

As we can see, the accounts-as-threads is a rather powerful analogy, suggesting
a number of solutions to possible synchronization problems that can be taken
verbatime from the concurrency literature. The only drawback of the presented
solution is the fact that it is rather monolithic: the contract now combines the
functionality of the data structure (i.e., the counter) and that of a synchro-
nization primitive (i.e., a lock). We will discuss possible ways to improve the
modularity of the implementation in Section 5.

Notes on formal reasoning and verification. Formal reasoning about permission
accounting and separation of state access is a long studied topic in the shared-
memory concurrency literature (see, e.g., [8] for an overview). Formalisms, such
as Concurrent Separation Logic and [30] Fractional/Counting permissions [6]
provide a flexible way to define the abstract ownership discipline and verify that
a particular implementation follows it faithfully. For instance, our Read/Write
lock contract can be formally proven safe (i.e., prohibiting concurrent write-
modifications) using a formal model of permissions by Bornat et al. [6].
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5 Discussion

5.1 Composing the contracts

The locking contract “pattern”, considered in Section 4, has a significant draw-
back: its design is non-modular. That is, the locking machinery is implemented by
the contract itself rather than by a third-party library. This is at odds with good
practices of software engineering, in which it is advised to implement synchro-
nization primitives, such as ordinary and reentrant locks, as standalone libraries,
which can be used for managing access client-specific resources.

But once the lock logic is factored out of the contract, the reasoning about the
contract’s behavior becomes significantly more di�cult, as, in order to prove the
preservation of its internal invariants, one needs to be aware of the properties
of the extracted locking protocol, such as, e.g., uniqueness of a writer, which
are external to the contract. In other words, verification of a contract can no
longer be conduced in an isolated manner and will require building a model that
allows reasoning about a contract interacting with other, rigorously specified
contracts. The idea of disentangling the logic of contracts is not inherent to our
concurrent view and is paramount in the existing good practices of contract
development. For instance, the same idea is advocated as a way to implement
upgradable contracts in Ethereum through introducing and additional level of
indirection [11]. Having a “contract factory”, implemented as another contract,
which can be invoked by any party, poses verification challenges similar to those
of proving the safety properties of higher-order concurrent object (i.e., an object,
that is manipulating with other objects) [19].

The idea of compositional reasoning and verification of mutually-dependent
and higher-order concurrent objects using concurrency logics has been a sub-
ject of a large research body in the past decade [12, 33, 34, 37]. Most of those
approaches focus on a notion of protocol, serving as an abstract interface of an
object’s behavior in the presence of concurrent updates, while hiding low-level
implementation details (i.e., the actual code). We believe, that by leveraging our
analogy, we will be able to develop a method for modular verification of such
multi-contract interactions.

5.2 Liveness properties

With the introduction of locks and exclusive access, another concurrency-related
issue arises: reasoning about progress and liveness properties of contract imple-
mentations. For instance, it is not di�cult to imagine a situation, in which a
particular account, registered as a “reader” in our example from Figure 5, might
never release the reader-lock, thus, blocking everyone else from being able to
change the contract’s state in the future. The liveness in this setting would mean
that eventually something good happens, meaning that any party is properly in-
centivised to release the lock. In a concurrency vocabulary, such an assumption
can be rephrased as fairness of the system scheduler, making it possible to reuse
existing proof methods for modular reasoning about progress [25] and termina-
tion [18] in of single- and multi-contract executions.
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6 Related Work

Formal reasoning about smart contracts is an emerging and exciting topic, and
suitable abstractions for describing a contract’s behavior are a subject of active
research. In this section, we relate our observations to the existing results in
formalizing and verifying contract properties, outlining promising areas that
would benefit from our concurrency analogy.

6.1 Verifying contract implementations

Since the DAO bug [9], the Ethereum community has been focusing on preventing
similar errors, with the aid of general-purpose tools for program verification.

At the moment, contracts written in Solidity can be annotated with Hoare-
style pre/postconditions and translated down to OCaml code [32], so they be-
come amenable to verification using the Why3 tool, which uses automation to
discharge the generated verification conditions [16]. This approach is e�cient for
verifying basic safety properties of Solidity programs, such as particular variables
always being within certain array index boundaries, and preservation of general
contract invariants (typically stated in a form if linear equations over values of
uint-valued variables) at the method boundaries and before performing external
contract calls—precisely what was violated by the DAO contract.

Bhargavan et al. have recently implemented a translation from a subset of
Solidity (without loops and recursion) [5] into F?—a programming language
and verification framework, based on dependent types [35]. They also provided
a translator from EVM bytecode to F? programs. Both these approaches made
it possible to use F? as a uniform tool for verification of contract properties,
such as invariant preservation and absence of unhandled exceptions, which were
encoded as an e↵ect via F?’s support for indexed Hoare monad [36]. A similar
approach to specify the behavior of contracts and based on dependent types has
been adopted by Pettersson and Edström [31], who implemented a small e↵ect-
based contract DSL as a shallow embedding into Idris [7], with the executable
code extracted to Serpent [14], a Python-style contract language.

Hirai has recently formalized the entire specification of Ethereum Virtual Ma-
chine [22] in Lem [28] with extraction to the Isabelle/HOL proof assistant, al-
lowing mechanized verification of contracts, compiled to EVM bytecode, for a
number of safety properties, including assertions on mutable state and the ab-
sence of potential reentrancy. Unlike the previous approaches, Hirai’s formaliza-
tion does not provide a syntactic way to construct and compose proofs (e.g.,
via a Hoare-style program logics), and all reasoning about contract behavior is
conducted out of the low-level execution semantics [38].

In contrast with these lines of work, which focus predominantly on low-level
safety properties and invariant preservation, our observations hint a more high-
level formalism for capturing the properties of a contract behavior and its com-
munication patterns with the outside world. In particular, we consider commu-
nicating state-transition systems (STSs) [29] with abstract state as a suitable
formalism for proving, e.g., trace and liveness properties of contract executions
using a toolset of established tools, such as TLA+ [24]. In order to connect such
an abstract representation with low-level contract code, one will have to prove a
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refinement [3] between the high-level and the low-level representations, i.e., be-
tween an STS and the code. In some sense, finding a suitable contract invariant
and proving it via Why3 or F? may be considered as proving a refinement be-
tween a one-state transition system, such that the only state is what is described
by the invariant, and an implementation that preserves it. However, we expect
more complicate STSs will be required in order to reason about contracts with
preemptive concurrency.

6.2 Reasoning about global contract properties

The observation about some contracts being prone to unintentional or adversar-
ial misuse due to the interference phenomenon has been made by Luu et al. [27].
They characterised the problem similar to what’s exhibited by our counter
example in Section 3 as transaction-ordering dependency (TOD), which un-
der our concurrency analogy can be generalized as a problem of unrestricted
interference. The solution to the TOD-problem, suggested by Luu et al., re-
quired changing the semantics of Ethereum transactions, providing a primitive,
similar to our testAndSet from Figure 4. While the advantage of such an ap-
proach is the absence of the need to modify the already deployed contracts (only
the client code interacting with them needs to be changed), it requires all in-
volved users to upgrade their client-side applications, in order to account for
the changes. In essence, Luu et al.’s solution targets a very specific concurrency
pattern: strengthening synchronization, provided by atomic registers, by adding
a blockchain-supported read-modify-write primitive. Realizing the nature of the
problem, hinted by our analogy, might instead suggest alternative contract-based
solutions, such as, e.g., engineering a locking proxy contract. The disadvantage
of this approach is, however, the need to foresee this behavior at the moment
of designing and deploying a contract. That said, such an ability to model this
behavior is precisely what, we believe, our analogy enables.

7 Conclusion

We believe that our analogy between smart contracts and concurrent objects can
provide new perspectives, stimulate research, and allow e↵ective reuse of existing
results, tools, and insights for understanding, debugging, and verifying complex
contract behaviors in a distributed ledger. As any analogy, ours should not be
taken verbatim: on the one hand, there are indeed issues in concurrency, which
seem to be hardly observable in contract programming; on the other hand, smart
contract implementers should also be careful about notions that do not have
direct counterparts in the concurrency realm, such as gas-bounded executions
and management of funds.

To conclude, we leave the reader with several speculations, inspired by our
observations, but neither addressed nor disproved:

– A common concurrency challenge in non garbage-collected languages is to
track the uniqueness of heap locations, which can be later reclaimed and
repurposed—an issue dubbed the ABA problem [10]. With the lack of due
caution, the ABA problem may lead to the violation of the object’s state
integrity. Can we imagine a similar scenario in a multi-contract setting?
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– Continuing the analogy, if one sees a blockchain as a shared state, then the
mining protocol defines the priorities for scheduling. Can we leverage the
insights from e�cient concurrent thread management in order to analyze
and improve the existing distributed ledger implementations?

– Linearizability [21] (aka atomicity) is a standard notion of correctness for
specifying high-level behavior of lock-free concurrent objects. What would
be an equivalent de-facto notion of consistency for composite contracts with
multi-transactional operations, such as BlockKing?
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Abstract. Smart contracts are computer programs that can be consis-
tently executed by a network of mutually distrusting nodes, without the
arbitration of a trusted authority. Because of their resilience to tamper-
ing, smart contracts are appealing in many scenarios, especially in those
which require transfers of money to respect certain agreed rules (like
in financial services and in games). Over the last few years many plat-
forms for smart contracts have been proposed, and some of them have
been actually implemented and used. We study how the notion of smart
contract is interpreted in some of these platforms. Focussing on the two
most widespread ones, Bitcoin and Ethereum, we quantify the usage of
smart contracts in relation to their application domain. We also analyse
the most common programming patterns in Ethereum, where the source
code of smart contracts is available.

1 Introduction

Since the release of Bitcoin in 2009 [38], the idea of exploiting its enabling tech-
nology to develop applications beyond currency has been receiving increasing
attention [24]. In particular, the public and append-only ledger of transaction
(the blockchain) and the decentralized consensus protocol that Bitcoin nodes
use to extend it, have revived Nick Szabo’s idea of smart contracts — i.e. pro-
grams whose correct execution is automatically enforced without relying on
a trusted authority [45]. The archetypal implementation of smart contracts is
Ethereum [26], a platform where they are rendered in a Turing-complete lan-
guage. The consensus protocol of Ethereum ensures the all and only the valid
updates to the contract states are recorded on the blockchain, so ensuring their
correct execution.

Besides Bitcoin and Ethereum, a remarkable number of alternative platforms
have flourished over the last few years, either implementing crypto-currencies or
some forms of smart contracts [1,7,9,28,35]. For instance, the number of crypto-
currencies hosted on coinmarketcap.com has incresed from 0 to more than 600
since 2012 and the number of github projects related to blockchains and smart
contracts has reached, respectively, 2, 715 and 445 units (see Figure 1). In the
meanwhile, industries and some national governments have started dealing with
these topics [39, 46], also with significant investments.

http://coinmarketcap.com/
http://github.com
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Fig. 1: On the left, monthly trend of the number of crypto-Currencies hosted on
coinmarketcap.com. On the right, number of new projects related to blockchains
and smart contracts which are created every month on github.com.

Despite the growing hype on blockchains and smart contracts, the under-
standing of the actual benefits of these technologies, and of their trustworthiness
and security, has still to be assessed. In particular, the consequences of unsafe
design choices for the programming languages for smart contracts can be fatal, as
witnessed by the unfortunate epilogue of the DAO contract [13], a crowdfunding
service plundered of ⇠ 50M USD because of a programming error. Since then,
many other vulnerabilities in smart contract have been reported [12,17,35].

Understanding how smart contracts are used, and how they are implemented,
could help designers of smart contract platforms to create new domain-specific
languages (not necessarily Turing complete [25,27,31,40]), which by-design avoid
vulnerabilities as the ones discussed above. Further, this knowledge could help
to improve analysis techniques for smart contracts (like e.g. the ones in [23,35]),
by targeting contracts with specific programming patterns.

Contributions. This paper is a methodic survey on smart contracts, with a
focus on Bitcoin and Ethereum — the two most widespread platforms currently
supporting them. Our main contributions can be summarised as follows:

– in Section 2 we examine the Web for news about smart contracts in the
period from June 2013 to September 2016, collecting data about 12 plat-
forms. We choose from them a sample of 6 platforms which are amenable
to analytical investigation. We analyse and compare several aspects of the
platforms in this sample, mainly concerning their usage, and their support
for programming smart contracts.

– in Section 3 we propose a taxonomy of smart contracts, sorting them into cat-
egories which reflect their application domain. We collect from the blockchains
of Bitcoin and Ethereum a sample of 834 smart contracts, which we classify
according to our taxonomy. We then study the usage of smart contracts,
measuring the distribution of their transactions by category. This allows us

http://coinmarketcap.com/
http://github.com
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to compare the di↵erent usage of Bitcoin and Ethereum as platforms for
smart contracts.

– in Section 4 we consider the source code of the Ethereum contracts in our
sample. We identify 9 common design patterns, and we quantify their usage
in contract, also in relation to the corresponding category. Together with
the previous point, ours constitutes the first quantitative investigation on
the usage and programming of smart contract in Ethereum.

All the data collected by our survey are availble online at: goo.gl/pOswL8.

2 Platforms for smart contracts

In this section we analyse various platforms for smart contracts. We start by
presenting the methodology we have followed to choose the candidate platforms
(Section 2.1). Then we describe the key features of each platform, pinpointing
di↵erences and similarities, and drawing some general statistics (Section 2.2).

2.1 Methodology

To choose the platforms subject of our study, we have drawn up a candidate
list by examining all the articles of coindesk.com in the “smart contracts” cat-
egory1. Starting from June 2013, when the first article appeared, up to the 15th
of September 2016, 175 articles were published, describing projects, events, com-
panies and technologies related to smart contracts and blockchains. By manually
inspecting all these articles, we have found references to 12 platforms: Bitcoin,
Codius, Counterparty, DAML, Dogeparty, Ethereum, Lisk, Monax, Rootstock,
Symbiont, Stellar, and Tezos.

We have then excluded from our sample the platforms which, at the time
of writing, do not satisfy one of the following criteria: (i) have already been
launched, (ii) are running and supported from a community of developers, and
(iii) are publicly accessible. For the last point we mean that, e.g., it must be
possible to write a contract and test it, or to explore the blockchain through
some tools, or to run a node. We have inspected each of the candidate plat-
forms, examining the related resources available online (e.g., o�cial websites,
white-papers, forum discussions, etc.) After this phase, we have removed 6 plat-
forms from our list: Tezos and Rootstock, as they do not satisfy condition (i);
Codius and Dogeparty, which violate condition (ii), DAML and Symbiont, which
violate (iii). Summing up, we have a sample of 6 platforms: Bitcoin, Ethereum,
Counterparty, Stellar, Monax and Lisk, which we discuss in the following.

2.2 Analysis of platforms

We now describe the general features of the collected platforms, focussing on:
(i) whether the platform has its own blockchain, or if it just piggy-backs on an

1 www.coindesk.com/category/technology/smart-contracts-news

https://goo.gl/pOswL8
http://www.coindesk.com
http://www.coindesk.com/category/technology/smart-contracts-news


4 Bartoletti M., Pompianu, L.

already existing one; (ii) for platforms with a public blockchain, their consensus
protocol, and whether the blockchain is public or private to a specific set of
nodes; (iii) the languages used to write smart contracts.

Bitcoin [38] is a platform for transferring digital currency, the bitcoins (BTC).
It has been the first decentralized cryptocurrency to be created, and now is
the one with the largest market capitalization. The platform relies on a public
blockchain to record the complete history of currency transactions. The nodes
of the Bitcoin network use a consensus algorithm based moderately hard “proof-
of-work” puzzles to establish how to append a new block of transactions to the
blockchain. Nodes work in competition to generate the next block of the chain.
The first node that solves the puzzle earns a reward in Bitcoin.

Although the main goal of Bitcoin is to transfer currency, the immutability
and openness of its blockchain have inspired the development of protocols that
implement (limited forms of) smart contracts. Bitcoin features a non-Turing
complete scripting language, which allows to specify under which conditions a
transaction can be redeemed. The scripting language is quite limited, as it only
features some basic arithmetic, logical, and crypto operations (e.g., hashing and
verification of digital signatures). A further limitation to its expressiveness is the
fact that only a small fraction of the nodes of the Bitcoin network can process
transactions whose script is more complex than verifying a signature.2

Ethereum [26] is the second platform for market capitalization, after Bitcoin.
Similarly to Bitcoin, it relies on a public blockchain, with a consensus algo-
rithm similar to that of Bitcoin3. Ethereum has its own currency, denoted ETH.
Smart contracts are written in a stack-based bytecode language [47], which is
Turing-complete, unlike Bitcoin. There also exist a few high level languages (the
most prominent being Solidity4), which compile into the bytecode language.
Users create contracts and invoke their functions by sending transactions to the
blockchain, whose e↵ects are validated by the network. Both users and contracts
can store money and send/receive ether to other contracts or to other users.

Counterparty [30] is a platform without its own blockchain; rather, it embeds
its data into Bitcoin transactions. While the nodes of the Bitcoin network ignore
the data embedded in these transactions, the nodes of Counterparty recognise
and interpret them. Smart contracts can be written in the same language used
by Ethereum. However, unlike Ethereum, no consensus protocol is used to val-
idate the results of computations5. Counterparty has its own currency, which
can be transferred between users, and be spent for executing contracts. Unlike
Ethereum, nodes do not obtain fees for executing contracts; rather, the fees paid

2 As far as we know, currently only the Eligius mining pool accepts more general
transactions (called non-standard in the Bitcoin community). However, this pool
only mines ⇠ 1% of the total mined blocks [19].

3 The consensus mechanism of Ethereum is a variant of the GHOST protocol in [44].
4 Solidity: solidity.readthedocs.io/en/develop/index.html
5 See FAQ: How do Smart Contracts “form a consensus” on Counterparty?

http://solidity.readthedocs.io/en/develop/index.html
http://counterparty.io/docs/faq-smartcontracts/#how-do-smart-contracts-form-a-consensus-on-counterparty
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by clients are destroyed, and nodes are indirectly rewarded from the inflation of
the currency. This mechanism is called proof-of-burn.

Stellar [10] features a public blockchain with its own cryptocurrency, governed
by a consensus algorithm inspired to federated Byzantine agreement [11]. Basi-
cally, a node agrees on a transaction if the nodes in its neighbourhood (that are
considered more trusted than the others) agree as well. When the transaction
has been accepted by enough nodes of the network, it becomes infeasible for
an attacker to roll it back, and it can be considered as confirmed. Compared to
proof-of-work, this protocol consumes far less computing power, since it does not
involve solve cryptographic puzzles. Unlike Ethereum, there is no specific lan-
guage for smart contracts; still, it is possible to gather together some transactions
(possibly ordered in a chain) and write them atomically in the blockchain. Since
transactions in a chain can involve di↵erent addresses, this feature can be used
to implement basic smart contracts. For instance, assume that a participant A
wants to pay B only if B promises to pay C after receiving the payment from A.
This behaviour can be enforced by putting these transactions in the same chain.
While this specific example can be implemented on Bitcoin as well, Stellar also
allows to batch operations di↵erent from payments, as create a new account.
Stellar features special accounts, called multisignature, that can be handled by
several owners. To perform operations from these accounts, a threshold of consen-
sus must be reached among the owners. Transaction chaining and multisignature
accounts can be combined to create more complex contracts.

Monax [8] supports the execution of Ethereum contracts, without having its
own currency. Monax allows users to create private blockchains, and to define
authorisation policies for accessing them. Its consensus protol6 is organised in
rounds, where a participant proposes a new block of transactions, and the others
vote for it. When a block fails to be approved, the protocol moves to the next
round, where another participant will be in charge of proposing blocks. A block
is confirmed when it is approved by at least 2/3 of the total voting power.

Lisk [6] has its own currency, and a public blockchain with a delegated proof-
of-stake consensus mechanism7. More specifically, 101 active delegates, each one
elected by the stakeholders, have the authority to generate blocks. Stakeholders
can take part to the electoral process, by placing votes for delegates in their
favour, or by becoming candidates themselves. Lisk supports the execution of
Turing-complete smart contracts, written either in JavaScript or in Node.js. Un-
like Ethereum, determinism of executions is not ensured by the language: rather,
programmers must take care of it, e.g. by not using functions like Math.random.
Although Lisk has a main blockchain, each smart contract is executed on a
separated one. Users can deposit or withdraw currency from a contract to the
main chain, while avoiding double spending. Contract owners can customise

6 Tendermint blockchain consensus: tendermint.com
7 Delegated Proof of Stake blockchain consensus: lisk.io

https://tendermint.com/
https://lisk.io/documentation?i=lisk-handbooks/DelegateHandbook
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Platform
Blockchain

Contract Language Total Tx
Volume Marketcap

Type Size Block int. (K USD) (M USD)

Bitcoin
Public 96 GB 10 min.

Bitcoin scripts + signatures 184,045,240 83,178 15,482
Counterparty EVM bytecode 12,170,386 33 4
Ethereum Public 17-60 GB 12 sec. EVM bytecode 14,754,984 10,354 723
Stellar Public ? 3 sec. Transaction chains + signatures ? 35 17
Monax Private ? Custom EVM bytecode + permissions ? n/a n/a
Lisk Private ? Custom JavaScript ? 45 15

Table 1: General statistics of platforms for smart contracts.

their blockchain before deploying their contracts, e.g. choosing which nodes can
participate to the consensus mechanism.

Table 1 summarizes the main features of the analysed platforms. The question
mark in some of the cells indicates that we were unable to retrieve the informa-
tion (e.g., we have not been able to determine the size of Monax blockchains,
since they are private). The first three columns next to the platform name de-
scribe features of the blockchain: whether it is public; its size; the average time
between two consecutive blocks. Note that Bitcoin and Counterparty share the
same cell, since the second platform uses the Bitcoin blockchain. Measuring the
size of the Ethereum blockchain depends on which client and which pruning
mode is used. For instance, using the Geth client, we obtain a measure of 17GB
in “fast sync” mode, and of 60GB in “archive” mode.8 In platforms with pri-
vate blockchains, their block interval is custom. The fifth column describes the
support for writing contracts. The sixth column shows the total number of trans-
actions9. The last two columns show the daily volume of currency tranfers, and
the market capitalisation of the currency (both in USD, rounded, respectively,
to thousands and millions)10. All values reported on Table 1 are updated to
January 1st, 2017.

3 Analysing the usage of smart contracts

In this section we analyse the usage of smart contracts, proposing a classifi-
cation which reflects their application domain. Then, focussing on Bitcoin and
Ethereum, we quantify the usage of smart contracts in relation to their appli-
cation domain. We start by presenting the methodology we have followed to
sample and classify Bitcoin and Ethereum smart contracts (Section 3.1). Then,
we introduce our classification and our statistical analysis (Sections 3.2 and 3.3).

8 redd.it/5om2lw
9 Obtained from blockchain.info for Bitcoin, from blockscan.com for Counter-
party, and from etherscan.io for Ethereum.

10 Market capitalization estimated by coinmarketcap.com.

https://github.com/ethereum/go-ethereum/wiki/geth
https://www.reddit.com/r/ethereum/comments/5om2lw/current_ethereum_blockchain_size
https://blockchain.info/charts/n-transactions-total
https://blockscan.com/
https://etherscan.io/
http://coinmarketcap.com/
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3.1 Methodology

We sample contracts from Bitcoin and Ethereum as follows:

– for Ethereum, we collect on January, 1st 2017 all the contracts that figure
as “verified” on the blockchain explorer etherscan.io. This means that
the contract bytecode stored on the blockchain matches the source code
(generally written in a high level language, such as Solidity) submitted to
the explorer. In this way, we obtain a sample of 811 contracts.

– for Bitcoin, we start by observing that many smart contracts save their
metadata on the blockchain through the OP RETURN instruction of the
Bitcoin scripting language [1,2,7,21]. We then scan the Bitcoin blockchain on
January 1st 2017, searching for transactions that embed in an OP RETURN
some metadata attributable to a Bitcoin smart contract. To this purpose we
use an explorer11 which recognises 23 smart contracts, and extracts all the
transactions related to them.

3.2 A taxonomy of smart contracts

We propose a taxonomy of smart contracts into five categories, that describe
their intended application domain. We then classify the contracts in our sample
according to the taxonomy. To this purpose, for Ethereum contracts we manually
inspect the Solidity source code, while for Bitcoin contracts we search their
web pages and related discussion forums. After this manual investigation, we
distribute all the contracts into the five categories that we present below.

Financial. Contracts in this category manage, gather, or distribute money as
preeminent feature. Some contracts certify the ownership of a real-world as-
set, endorse its value, and keep track of trades (e.g., Colu currently tracks
over 50,000 assets on Bitcoin). Other contracts implement crowdfunding
services, gathering money from investors in order to fund projects (the
Ethereum DAO project was the most representative one, until its collapse
due to an attack in June 2016). High-yield investment programs are contracts
that collect money from users under the promise that they will receive back
their funds with interest if new investors will join the scheme. In most cases
these are frauds, like Ponzi schemes (e.g., GovernMental) and chain-letter
schemes (e.g., King of The Ether Throne). Some contracts provide an insur-
ance on setbacks which are digitally provable (e.g., Etherisc sells insurance
policies for flights; if a flight is delayed or cancelled, one obtains a refund).
Other contracts publish advertisement messages (e.g., PixelMap is inspired
to the Million Dollar Homepage).

Notary. Contracts in this category exploit the immutability of the blockchain to
store some data persistently, and in some cases to certify their ownership and
provenance. Some contracts allow users to write the hash of a document on
the blockchain, so that they can prove document existence and integrity (e.g.,

11 github.com/BitcoinOpReturn/OpReturnTool

https://etherscan.io/contractsVerified
http://coloredcoins.org/explorer/
https://forum.daohub.org/
http://governmental.github.io/GovernMental/
https://www.kingoftheether.com/
https://fdi.etherisc.com/
http://pixelmap.io/
https://en.wikipedia.org/wiki/The_Million_Dollar_Homepage
https://github.com/BitcoinOpReturn/OpReturnTool
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Category Platform Contracts Transactions

Financial
Bitcoin 6 470,391

Ethereum 373 624,046

Notary
Bitcoin 17 443,269

Ethereum 79 35,253

Game
Bitcoin 0 0

Ethereum 158 58,257

Wallet
Bitcoin 0 0

Ethereum 17 1,342

Library
Bitcoin 0 0

Ethereum 29 37,034

Unclassified
Bitcoin 0 0

Ethereum 155 3,679

Total
Bitcoin 23 913,660

Ethereum 811 759,611
Overall 834 1,673,271

Table 2: Transactions by category.

Proof of Existence). Others allow to declare copyrights on digital arts files,
like photos or music (e.g., Monegraph). Some contracts (e.g., Eternity Wall)
just allow users to write down on the blockchain messages that everyone
can read. Other contracts associate users to addresses (often represented as
public keys), in order to certify their identity (e.g., Physical Address).

Game. This category gathers contracts which implement games of chance (e.g.,
LooneyLottery, Dice, Roulette, RockPaperScissors) and games of skill (e.g.,
Etherization), as well as some games which mix chance and skill, paying for
the solution of some puzzle (e.g., PRNG challenge).

Wallet. The contracts in this category handle keys, send transactions, manage
money, deploy and watch contracts, in order to simplify the interaction with
the blockchain. Wallets can be managed by one or many owners, in the latter
case requiring multiple authorizations (like, e.g. in Multi-owned).

Library. These contracts implement general-purpose operations (like e.g., math
and string transformations), to be used by other contracts.

3.3 Quantifying the usage of smart contracts by category

We analyse all the transactions related to the 834 smart contracts in our sample.
Table 2 displays how the transactions are distibuted in the categories of Sec-
tion 3.2. For both Bitcoin and Ethereum, we show the number of detected con-
tracts (third column), and the total number of transactions (fourth column).

Overall, we have 1,673,271 transactions. Notably, although Bitcoin contracts
are fewer than those running on Ethereum, they have a larger amount of transac-
tions each. A clear example of this is witnessed by the financial category, where
6 Bitcoin contracts12 totalize two thirds of the transactions published by the 373
Ethereum contracts in the same category.

12 Bitcoin financial contracts: Colu, CoinSpark, OpenAssets, Omni, SmartBit, BitPos.

https://proofofexistence.com/
https://monegraph.com/
https://eternitywall.it/
https://proofofphysicaladdress.com/
https://etherscan.io/address/0x2ef76694fBfD691141d83F921A5ba710525De9B0#code
https://etherscan.io/address/0x2AB9f67A27f606272189b307052694D3a2B158bA#code
https://etherscan.io/address/0x18a672e11d637fffadccc99b152f4895da069601#code
https://etherscan.io/address/0x1d77340D3819007BbfD7fdD37C22BD3b5c311350#code
http://www.bspend.com/etherization
https://etherscan.io/address/0x4ed65e408439a7f6459b5cfbd364f373bd6ed5f7#comments
https://etherscan.io/address/0xA2D4035389aae620E36Bd828144b2015564C2702#code
https://www.colu.com/
http://coinspark.org/
https://github.com/OpenAssets
http://www.omnilayer.org/
https://www.smartbit.com.au/
https://bitpos.me/
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Fig. 2: Distribution of transactions by category.

While both Bitcoin and Ethereum are mainly focussed on financial contracts,
we observe major di↵erences about the other categories. For instance, the Bit-
coin contracts in the Notary category13 have an amount of transactions similar
to that of the Financial category, unlike in Ethereum. The second most used cat-
egory in Ethereum is Game. Although some games (e.g., lotteries [15, 16,18,22]
and poker [34]) which run on Bitcoin have been proposed in the last few years,
the interest on them is still mainly academic, and there is no experimental ev-
idence that these contracts are used in practice. Instead, the greater flexibility
of the Ethereum programming language simplifies the development of this kind
of contracts (although with some quirks [29] and limitations14).

Note that in some cases there are not enough elements to categorise a con-
tract. This happens e.g., when the contract does not link to the project webpage,
and there are neither comments in the forum nor in the contract sources.

4 Design patterns for Ethereum smart contracts

In this section we study design patterns for Ethereum smart contracts. To this
purpose, we consider the sample of 811 contracts collected through the method-
ology described in Section 3. By manually inspecting the Solidity source code
of each of these contracts, we identify some common design patterns. We start
in Section 4.1 by describing these patterns. Then, in Section 4.2 we measure the
usage of the patterns in the various categories of contracts identified in Section 3.

13 Bitcoin notary contracts: Factom, Stampery, Proof of Existence, Blocksign, Crypto-
Copyright, Stampd, BitProof, ProveBit, Remembr, OriginalMy, LaPreuve, Nicosia,
Chainpoint, Diploma, Monegraph, Blockai, Ascribe, Eternity Wall, Blockstore.

14 Although the Ethereum virtual machine is designed to be Turing-complete, in prac-
tice the limitations on the amount of gas which can be used to invoke contracts also
limit the set of computable functions (e.g., verifying checkmate exceeds the current
gas limits of a transaction [33]).

https://www.factom.com/
https://stampery.com/
https://proofofexistence.com/
https://blocksign.com/
https://crypto-copyright.com/
https://crypto-copyright.com/
https://stampd.io/
https://bitproof.io/
https://github.com/thereal1024/ProveBit
https://remembr.io/
https://originalmy.com/
http://lapreuve.eu/explication.html
http://digitalcurrency.unic.ac.cy/free-introductory-mooc/academic-certificates-on-the-blockchain/
http://www.chainpoint.org/
http://diploma.report/
https://monegraph.com/
https://blockai.com/
https://www.ascribe.io
https://eternitywall.it/
https://github.com/blockstack/blockchain-id/wiki/Blockstore
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4.1 Design patterns

Token. This pattern is used to distribute some fungible goods (represented by
tokens) among users. Tokens can represent a wide variety of goods, like e.g.
coins, shares, outcomes or tickets, or everything else which is transferable
and countable. The implications of owning a token depend on the protocol
and the use case for which the token has been issued. Tokens can be used to
track the ownership of physical properties (e.g., gold [3]), or digital one (e.g.,
cryptocurrency). Some crowdfunding systems issue tokens in exchange for
donations (e.g., the Congress contract). Tokens are also used to regulate user
authorizations and identities. For instance, the DVIP contract specifies rights
and term of services for owners of its tokens. To vote on the poll ETCSurvey,
users must possess a suitable token. Given the popularity of this pattern, its
standardisation has been proposed [5]. Notably, the majority of the analysed
Ethereum contracts which issue tokens already adhere to it.

Authorization. This pattern is used to restrict the execution of code accord-
ing to the caller address. The majority of the analysed contracts check if the
caller address is that of the contract owner, before performing critical opera-
tions (e.g., sending ether, invoking suicide or selfdestruct). For instance, the
owner of Doubler is authorized to move all funds to a new address at any
time (this may raise some concerns about the trustworthiness of the contract,
as a dishonest owner can easily steal money). Corporation checks addresses
to ensure that every user can vote only once per poll. CharlyLifeLog uses a
white-list of addresses to decide who can withdraw funds.

Oracle. Some contracts may need to acquire data from outside the blockchain,
e.g. from a website, to determine the winner of a bet. The Ethereum language
does not allow contracts to query external sites: otherwise, the determinism
of computations would be broken, as di↵erent nodes could receive di↵erent
results for the same query. Oracles are the interface between contracts and
the outside. Technically, they are just contracts, and as such their state can
be updated by sending them transactions. In practice, instead of querying an
external service, a contract queries an oracle; and when the external service
needs to update its data, it sends a suitable transaction to the oracle. Since
the oracle is a contract, it can be queried from other contracts without
consistency issues. One of the most common oracles is Oraclize 15: in our
sample, it is used by almost all the contracts which resort to oracles.

Randomness. Dealing with randomness is not a trivial task in Ethereum. Since
contract execution must be deterministic, all the nodes must obtain the same
value when asking for a random number: this struggles with the random-
ness requirements wished. To address this issue, several contracts (e.g., Slot)
query oracles that generate these values o↵-chain. Others (e.g., Lottery) try
to generate the numbers locally, by using values not predictable a priori,
as the hash of a block not yet created. However, these techniques are not
generally considered secure [17].

15 oraclize.it

https://etherscan.io/address/0xe0b7927c4af23765cb51314a0e0521a9645f0e2a#code
https://etherscan.io/address/0x815a46107e5ee2291a76274dc879ce947a3f0850#code
https://etherscan.io/address/0xfb6916095ca1df60bb79ce92ce3ea74c37c5d359#code
https://etherscan.io/address/0xadc46ff5434910bd17b24ffb429e585223287d7f#code
https://etherscan.io/address/0xdb6d68e1d8c3f69d32e2d83065492e502b4c67ba#code
https://etherscan.io/address/0x3fccb426c33b1ae067115390354b968592348d05#code
https://etherscan.io/address/0x8b4aa759d83ec43efba755fc27923e4a581bccc1#code
https://etherscan.io/address/0xdc84953D7C6448e498Eb3C33ab0F815da5D13999#code
https://etherscan.io/address/0x684282178b1d61164febcf9609ca195bef9a33b5#code
https://etherscan.io/address/0x5A5eFF38DA95b0D58b6C616f2699168B480953C9#code
https://etherscan.io/address/0x76bc9e61a1904b82cbf70d1fd9c0f8a120483bbb#code
https://etherscan.io/address/0x302fE87B56330BE266599FAB2A54747299B5aC5B#code
http://www.oraclize.it/
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Token Auth. Oracle Random. Poll Time Termin. Fork Math None

Financial 24-51 51-39 2-15 1-2 5-29 23-31 14-30 8-69 4-47 29-66
Notary 13-6 52-9 1-2 0-0 8-9 20-6 29-13 0-0 1-3 30-15
Game 3-3 84-27 25-74 72-93 25-57 73-43 21-19 1-3 2-9 1-1
Wallet 18-2 100-3 0-0 0-0 0-0 94-6 100-10 0-0 12-6 0-0
Library 0-0 31-2 0-0 14-3 0-0 24-3 24-4 34-24 21-19 17-3

Unclassified 43-39 66-21 3-9 1-1 3-6 18-10 28-25 28-25 1-5 15-15
Total 21-100 61-100 7-100 15-100 9-100 33-100 22-100 5-100 4-100 20-100

Table 3: Relations between design patterns and contract categories. A pair (p, q)
at row i and column j means that p% of the contracts in category i use the
pattern of column j, and q% of contracts with pattern j belong to category i.

Poll. Polls allows users to vote on some question. Often this is a side feature
in a more complex scenario. For instance, in the Dice game, when a certain
state is reached, the owner issues a poll to decide whether an emergency
withdrawal is needed. To determine who can vote and to keep track of the
votes, polls can use tokens, or they can check the voters’ addresses.

Time constraint. Many contracts implement time constraints, e.g. to spec-
ify when an action is permitted. For instance, BirthdayGift allows users to
collect funds, which will be redeemable only after their birthday. In notary
contracts, time constraints are used to prove that a document is owned from
a certain date. In game contracts, e.g. Lottery, time constraints mark the
stages of the game.

Termination. Since the blockchain is immutable, a contract cannot be deleted
when its use has come to an end. Hence, developers must forethink a way
to disable it, so that it is still present but unresponsive. This can be done
manually, by inserting ad-hoc code in the contract, or automatically, calling
selfdestruct or suicide. Usually, only the contract owner is authorized
to terminate a contract (e.g., as in SimpleCoinFlipGame).

Math. Contracts using this pattern encode the logic which guards the execution
of some critical operations. For instance, Badge implements a method named
subtractSafely to avoid subtracting a value from a balance when there are
not enough funds in an account.

Fork check. The Ethereum blockchain has been forked four times, starting
from July 20th, 2016, when a fork was performed to contrast the e↵ect of
the DAO attack [4]. To know whether or not the fork took place, some
contracts inspect the final balance of the DAO. Other contracts use this
check to detect whether they are running on the main chain or on the fork,
performing di↵erent actions in the two cases. AmIOnTheFork is a library
contract that can be used to distinguish the main chain from the forked one.

https://etherscan.io/address/0x2AB9f67A27f606272189b307052694D3a2B158bA#code
https://etherscan.io/address/0x9828f591b21ee4ad4fd803fc7339588cb83a6b84#code
https://etherscan.io/address/0x302fE87B56330BE266599FAB2A54747299B5aC5B#code
https://etherscan.io/address/0xe941e5d4a66123dc74886699544fbbb942f1887a#code
https://etherscan.io/address/0x54bda709fed875224eae569bb6817d96ef7ed9ad#code
https://etherscan.io/address/0x2bd2326c993dfaef84f696526064ff22eba5b362#code


12 Bartoletti M., Pompianu, L.

4.2 Quantifying the usage of design patterns by category

We now study how the design patterns identified in Section 4.1 are used in
smart contracts. Out of the 811 analysed contracts, 648 use at least one of the
9 patterns presented, for a grand total of 1427 occurrences of usage.

Table 3 shows the correlation between the usage of design patterns and con-
tract categories, as defined in Section 3. A cell at row i and column j shows a
pair of values: the first value is the percentage of contracts of category i that
use the pattern of column j; the second one is the percentage of contracts with
pattern j which belongs to category i. So, for instance, 24% of the contracts in
the financial category presents the token pattern, and 51% of all the contracts
with the token pattern are financial ones.

We observe that token, authorization, time constraint, and termination are
generally the most used patterns. Some patterns are spread across several cate-
gories (e.g., termination and time constraint), while others are mainly adopted
only in one. For instance, oracle and randomness patterns are peculiar of game
contracts, while the token pattern is mostly used in financial contracts. Although
math is the less used, it appears in each category. Some contracts do not use any
pattern (29% of financial and 30% of notary); almost all the contracts in game
and wallet categories uses at least one. Further, only 15% of all the unclassified
contracts do no use any pattern at all.

The most frequent patterns in financial contracts are token (24%), authoriza-
tion (51%), and time constraint (23%). Due to the presence of contracts which
implement assets and crowdfunding services, we have that half of contracts using
token and math patterns belong to the financial category. For instance, these ser-
vices use token for representing goods or developing polls. Moreover, a great 69%
of contracts that use the fork check pattern is financial. This is caused by the ne-
cessity of knowing the branch of the fork before deciding to move funds. Finally,
several financial applications (29%) perform simple operations (e.g. sending a
payment) without using any of our described patterns.

The authorization pattern is used in many notary contracts to ensure that
only the owner of a document can add or modify its data, in order to avoid
tampering. Most gambling games involve players who pay fees to join the game,
and rewards that can be collected by the winner of the game. The authorization
pattern is used to let the owner to be the only one able to redeem participants’
fees or to perform administrative operations, and to let the winner withdraw his
reward. The time constraint pattern is used to distinguish the di↵erent phases
of the game. For instance, within a specific time interval players can apply for
the game and/or bet; then, bets are over, and the game determines a winner. To
obtain the winner, usually gambling games resort to random numbers, which are
often generated through an oracle. Indeed, 25% of games use the oracle pattern,
and the pattern itself is used 74% of cases by a game contract. Since all game
contracts invoking an oracle (25%) ask for random values, and since 72% of
contracts use the random pattern, we can deduce that 47% of them generate
random numbers without resorting to oracles.
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Notably, 100% of wallet contracts adopt both authorization and termination
design patterns. A high 94% also uses time constraint. On the contrary, oracle,
poll, and randomness patterns are of little use when developing a wallet, while
math is sometimes used for securing operations on the balance.

5 Conclusions

We have analysed the usage of smart contracts from various perspectives. In Sec-
tion 2 we have examined a sample of 6 platforms for smart contracts, pinpointing
some crucial technical di↵erences between them. For the two most prominent
platforms — Bitcoin and Ethereum — we have studied a sample of 834 con-
tracts, categorizing each of them by its application domain, and measuring the
relevance of each of these categories (Section 3). The availability of source code
for Ethereum contract has allowed us to analyse the most common design pat-
terns adopted when writing smart contracts (Section 4).

We believe that this survey may provide valuable information to developers
of new, domain-specific languages for smart contracts. In particular, measuring
what are the most common use cases allows to understand which domains deserve
more investments. Furthermore, our study of the correlation between design
patterns and application domains can be exploited to drive the correct choice of
programming primitives of domain-specific languages for smart contracts.

Due to the mixed flavour of our analysis, which compares di↵erents plat-
forms and studies how smart contracts are interpreted on each them, our work
relates to various topics. The work [36] proposes design patterns for altering
and undoing of smart contracts; so far, our analysis in Section 4.2 has not still
found instances of these patterns in Ethereum. Among the works which study
blockchain technologies, [14] compares four blockchains, with a special focus on
the Ethereum one; [43] examines a larger set of blockchains, including also some
which does not fit the criteria we have used in our methodology (e.g., RootStock
and Tezos). Many works on Bitcoin perform empirical analyses of its blockchain.
For instance, [41, 42] study users deanonymization, [37] measures transactions
fees, and [20] analyses Denial-of-Service attacks on Bitcoin. Also, [32] investi-
gates whether Bitcoin users are interested more on digital currencies as asset
or as currency, with the aim of detecting the most popular use cases of Bit-
coin contracts, similarly to what we have done in Section 3.3. Our classification
of Bitcoin protocols based on OP RETURN transactions is inspired from [21],
which also measures the space consumption and temporal trend of OP RETURN
transactions.

Recently, some authors have started to analyse the security of Ethereum
smart contracts: among these, [17] surveys vulnerabilities and attacks, while [35]
and [23] propose analysis techniques to detect them. Our study on design pat-
terns for Ethereum smart contracts could help to improve these techniques, by
targeting contracts with specific programming patterns.
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Abstract. Distributed ledger technologies are rising in popularity, mainly
for the host of financial applications they potentially enable, through
smart contracts. Several implementations of distributed ledgers have
been proposed, and di↵erent languages for the development of smart
contracts have been suggested. A great deal of attention is given to the
practice of development, i.e. programming, of smart contracts. In this
position paper, we argue that more attention should be given to the
“traditional developers” of contracts, namely the lawyers, and we pro-
pose a list of requirements for a human and machine-readable contract
authoring language, friendly to lawyers, serving as a common (and a
specification) language, for programmers, and the parties to a contract.

1 Introduction

The emergence of distributed ledger technology, due to the development of Bit-
coin [22], sparked a lot of interest in di↵erent communities: from academia to in-
dustry, and from technological and financial circles to philosophical ones [24,27].

The amount of enthusiasm generated around distributed ledgers is indicative
of the potentialities that are waiting to be tapped into. What is undeniable,
today, is that the financial industry is paying very close attention to cryptocur-
rencies, especially Bitcoin, but also to other financial applications enabled by
distributed ledgers.

Which brings us to smart contracts, a concept first envisioned by Nick Sz-
abo [29], as far as 1995 so is claimed, and now believed to be enabled by the
advent of distributed ledgers. Several definitions for smart contracts exist, vary-
ing in their faithfulness to the original concept, and some of them only adding to
the existing confusion surrounding them. We will stand by the original definition
of Szabo: “[s]mart contracts [. . . ] facilitate all steps of the contracting process”;
search, negotiation, commitment, performance, and adjudication are all parts of
the contracting process he mentioned [28].

Bitcoin, as a platform, is able to model and execute smart contracts, but with
a lot of restrictions due to its limited scripting language. This limitation, along
with the observation that cryptocurrencies can be viewed as “just another kind
of smart contracts”, led eventually to the development of Ethereum [31]: a decen-
tralised platform where smart contracts are first-class citizens; the distributed
ledger is equipped with a Turing complete programming language that enables



developers to write “arbitrary” contracts/code. More recently, platforms built
on top of Bitcoin and supporting a Turing complete smart contracts language
were developed (e.g. Rootstock [11]), and maybe more interestingly, platforms
for smart contracts with non Turing complete languages were also developed,
i.e. ⌧ -Chain [6].

It is not a surprise that traditional programmers, if one may call them so,
are unable to carry out “economical thinking” [10]; indeed, they are also, in our
experience, ill-equipped to capture legal or regulatory thinking. The inverse can
be said of subject-matter experts, i.e. business analysts and lawyers; they are
most certainly unable to carry out “computational thinking”.

How to carry out the development of smart contracts in large financial in-
stitutions, where, traditionally, contracts are drafted by subject-matter experts?
More importantly, how can we reason on the legality of developed contracts? Ei-
ther manually by a lawyer, or automatically using a tool for compliance checking?
A failure to answer these questions inevitably contributes to the scepticism of
the financial industry –which has been put under the microscope by regulators
since 2008– about the future of smart contracts, and the industry’s reluctance
in adopting it.

In this position paper, we argue that trust in smart contracts, is also a
process; a bridge is needed to connect both sides of the abyss.

The rest of this paper is organised as follows: Section 2 shows how diverse is
the scene of distributed ledger technologies; Section 3 shows how irreconcilable
are the languages of programmers and subject-matter experts; Section 4 develops
our views on how can we build a bridge that enables trust, from an institutional
perspective, in smart contracts; we finally conclude in Section 5.

2 On Distributed Ledger Technologies

The introduction of Bitcoin by Satoshi Nakamoto [22] polarised the actors in the
financial industry since the beginning: some were extremely enthusiastic about
it, to the point where they claimed that Bitcoin is the “next big thing”, and
others were extremely sceptical about it.

The innovation of Bitcoin is not limited to the currency; the idea of a shared
ledger itself proved to be very powerful and sprung many platforms rivalling or
even complementing Bitcoin. The interested reader can refer to Tschorsch and
Scheuermann [30] for an excellent technical survey on distributed ledger tech-
nologies. Moreover, a quick look at the currently available platforms inspired
by Bitcoin, gives a good idea on the rising popularity of the technology: for in-
stance, coinmarketcap.com, a site that tracks market capitalisation of di↵erent
cryptocurrencies, lists 719 platforms.

Since its inception, Bitcoin provided a stack-based scripting language that
allowed developers to define the conditions to spend Bitcoins (e.g. requiring
multiple signatures), which revived the vision of smart contracts. However, this
scripting language is purposefully not Turing complete, which ultimately means
that it is limited in expressivity. In the following, we will take a look at four



di↵erent platforms that are meant to overcome Bitcoin’s scripting limitations,
illustrating the di↵erent technical choices one can make, regarding the develop-
ment of smart contracts.

The first platform we are going to look at, which is currently almost syn-
onymous to “smart contracts”, is Ethereum [31]. Ethereum was proposed as a
distributed platform independent of –yet very similar to– Bitcoin. To create dis-
tributed trust-less consensus and solve the double-spending problem, Ethereum
uses proof-of-work, just like Bitcoin, however, it provides the Ethereum Virtual
Machine (EVM) that runs a Turing complete stack based language, which opens
the doors to a hypothetically unlimited number of applications. Developers are
not forced to use the EVM’s opcode to write smart contracts. Indeed, they can
use Solidity or Serpent, which are high-level programming languages, similar
to javascript or python, respectively, that can compile to EVM byte code.

The second platform we are going to look at is Nxt 1, one of the earliest
smart contract platforms. Unlike Bitcoin and Ethereum, Nxt uses proof-of-stake
to achieve consensus and solve the double-spending problem. Moreover, Nxt
does not provide a scripting language to smart contract developers; instead, it
provides a RESTful API exposing a set of primitive operations (like spending,
storing strings, sending messages, etc.) that developers can invoke.

The third platform we will consider is Rootstock [11]. Unlike Ethereum, and
Nxt, Rootstock was developed to complement Bitcoin (as a sidechain [12]) and
provides its own Turing complete virtual machine (the RVM) to enable smart
contracts.

The fourth and final platform we will examine is ⌧�Chain [6]. The authors
of this platform argue that Turing completeness is not necessary for distributed
ledgers, because with Turing completeness comes undecidability, i.e. smart con-
tracts can go in an infinite loop and the network will never be able to predict this
behaviour. Indeed, Ethereum overcomes the problem of undecidability by forc-
ing the caller of the smart contract to provide gas with the transaction (bought
with ether, Ethereum’s own cryptocurrency); every instruction on the EVM con-
sumes a predefined amount of gas, and they are non-refundable, i.e. if the gas is
totally consumed and the smart contract didn’t finish execution, the gas is never
returned to the caller.

However, Asor [6] propose the use of an ontology [2] of rules, along with a
reasoner, to enable computations on the network. Authors of smart contracts
would write them in a totally functional programming language, like Idris [7],
that will be ultimately translated into the ontology. This approach will not only
make computations decidable, but it also allows the assertion of properties of
smart contracts that were impossible with Turing complete languages, e.g. if
the contract connects to the Internet or not, or if the contract fulfills some
interfaces/requirements/etc.

The interested reader can refer to the survey written by Seijas et al. [25]
for more information on scripting languages for distributed ledgers. The afore-
mentioned platforms illustrate some of the variations that exist in distributed

1 https://nxt.org/

https://nxt.org/


ledger technology’s ecosystem. These platforms can di↵er not only in the tooling
and the language they expose for smart contract development, but also in the
paradigms that govern them. The development of smart contracts thus requires
a deep and serious understanding of the target platform. In the following section,
we will examine what hinders a fast adoption of such an enabling technology by
the financial industry.

3 Staring Into the Abyss

A close inspection of the literature shows that e↵ort is being put in helping
developers author smart contracts, by either developing tools, or creating ab-
stractions.

Recently, Delmolino et al. [10] reported on their experience in teaching smart
contract programming, using Ethereum, to undergraduate students at the Uni-
versity of Maryland. The authors concluded that smart contract programming
requires an “economic thinking” perspective that traditional programmers may

not have acquired. Indeed, students repeatedly made logical errors that ulti-
mately lead to money leaks, failed to use cryptographic primitives to secure the
contracts from attackers, failed to account for the incentives of contract callers,
and even made mistakes directly related to Ethereum.

This observation lead to the development of a Masters thesis by Pettersson
and Edström [23], and their objective was to help said programmers to develop
safer smart contracts. Their aim is to prevent 3 kinds of mistakes contract devel-
opers fall in: unexpected states, failure to use cryptography, and overflowing the
EVM’s stack. They propose to use of a functional programming language, namely
Idris. They developed a code generator that transforms code produced by an
Idris compiler to Serpent code, which can be subsequently compiled into EVM

bytecode.
In a di↵erent, yet related work, Luu et al. [21] noted that a class of security-

related bugs in smart contracts are due to the gaps in the understanding of the
distributed semantics of the underlying platform.

Another interesting work is that of Florian et al. [20], who propose the use
of logic-based smart contracts. They showed that this approach can complement
smart contracts written in procedural code, in terms of contract negotiation,
formation, storage/notarizing, enforcement, monitoring and activities related to
dispute resolution.

In a di↵erent take, Garćıa-Bañuelos et al. [16] showed how the business
process language BPMN can be mapped into executable smart contracts on the
Ethereum. This development lead Hull et al. [19] to propose a Business Col-

laboration Language (BCL) for shared ledgers. Indeed, this BCL can be thought
of as the equivalent of SQL for relational databases, targeting shared ledgers,
regardless of implementation-specific details.

As far as we know, the only works that consider the issue of authoring smart
contracts from the subject-matter expert’s perspective are those proposed by
Frantz and Nowostawski [14] and Clack et al. [9].



Frantz and Nowostawski [14] propose a semi-automated method for the trans-
lation of human readable contracts to smart contracts on Ethereum. The authors
develop a domain specific language for contract modelling, where statements are
rules expressed in English, and that translates into Solidity. However, this so-
lution is very tied to Ethereum, and it is not clear how extensible or adaptable
it is. Additionally, it doesn’t cover the legal language that a lawyer would be
accustomed to.

Clack et al. [9] rightly identify two semantics of contracts:

Operational semantics: concerned with the execution of the contract on a
specific platform

Denotational semantics: that captures the “legal meaning” of the contract,
as understood by a lawyer.

The authors envision the use of smart contract templates, based on the idea
of Ricardian Contracts [17,18]. A Ricardian Contract is a digitlly signed triple
hP,C,Mi, where P is the legal prose, capturing denotational semantics, C is
the platform specific code expressing operational semantics, and M is a map
(key-value pairs) of parameters used in P and C.

While the use of smart contract templates, based on Ricardian Contracts,
looks like a move towards the right direction, we argue that prose should not be
tied to code:

– While the semantics of legal language can be expressed as a set of deontic
defeasible rules, the code is rather procedural. The order of the instructions
in the procedure does not reflect the natural order of the contract clauses
expressed in natural language [20].

– The life-cycle of legal prose is independent from the life-cycle of the code.
For example, a lawyer might describe the terms of a contract in prose and
never come back to it, while a developer will –most likely– iterate through
di↵erent implementations (e.g. bug fixes).

– There is not a single smart contract platform, which ultimately means that
di↵erent parameters (key-value pairs of M) will be needed for di↵erent plat-
forms. For example, several works (e.g. [32,3,1]) describe data feed systems
that enable smart contracts to consume data feeds from outside the dis-
tributed ledger (e.g. a stock market index); while the notion of an external
feed might be familiar to a lawyer, its technical details, thus the choices
related to the adoption of one method over another, and eventually the
parametrisation is definitely out of her/his reach and/or interest.

In the following section, we will identify the key issues, as we see them,
regarding the adoption of smart contracts, and how we envision to solve them.

4 Trusting Smart Contracts

In Section 2 we tried to show, through a non-exhaustive list of examples, how
distributed ledgers can di↵er on a deep technical level, which requires a very



intimate technological knowledge by the implementer of the smart contract.
Afterwards, we showed, in Section 3, how current e↵ort is mostly focused on
developing technical tools and infrastructure aimed at facilitating the technical
implementation of smart contracts. However, there is a major lacuna in all this:
that is the translation, or mapping, of the contract’s denotational semantics to
its operational semantics.

We share the view of Clack et al. [9] on the separation between operational
and denotational semantics of contracts. In fact, we argue that trust in smart
contracts can only stem from the ability of lawyers in financial institutions to
understand, express, and ultimately validate the denotational semantics of a
contract. However, we disagree on the assumption they make on the languages
expressing these semantics, i.e. any assumption on the correspondence between a
“legal language” and the “technical language” cannot be achieved, as the lawyer
cannot predict the behaviour of the code.

What is missing from all of the described work, is the realisation that the
involvement of a lawyer, especially in the heavily regulated financial industry, in
the authoring of contracts, not only smart contracts, is paramount, for her/his
knowledge on the regulation governing said contracts dictates the denotational
semantics. A lawyers’ knowledge of the explicit and implicit rights and obli-
gations, counterparties, stakeholders, schedules and penalties, and regulations
governing a financial contract needs to be represented.

Indeed, the financial crisis of 2008 was in part caused by the sub-prime lend-
ing practice that encouraged high credit risk borrowers to take on mortgages at
high interest rates that they had little ability to repay. These debts were pooled
together and engineered to be o↵ered as low risk asset-backed securities. These
were heavily traded because of the perceived low risk while providing high re-
turns. The housing market in the US slumped setting o↵ a chain reaction that
ultimately meant the mortgage-backed securities became worthless having di-
rect e↵ect on the capital of the major global banks. Funding dried up and more
importantly, the trust that keeps the financial system performing dissolved. As
a result, regulation in the financial industry has grown exponentially.

There are two scenarios where the lawyer’s involvement is unavoidable:

– When the contract is partly fulfilled through code, because the lawyer can
only validate its textual version [20], i.e. the prose.

– When assessing the compliance of the contract with regulations, from the
point of view of both the legal requirements introduced by the regulation
(e.g. on financial activities, anti-money laundering, or consumer protection),
and of the e↵ects that these regulations automatically bind to the contract
(naturalia negotii [15]).

Therefore, we think that proper authoring of smart contracts should involve
two main agents: the lawyer and the developer. The interaction between both
agents should be governed by a common language. The lawyer authors and
consumes contracts written in that language, while the developer uses it as
a specification guiding her/his implementation. This common language should
have the following properties:



– It should not alienate the lawyer, i.e. it should be as close as possible to the
language of contracts s/he is used to.

– It should be expressive enough to allow the authoring of smart and “not-so-

smart” contracts.

– It should be a Controlled Natural Language (CNL) with an unambiguous
grammar. The CNL should be mappable to a logical formalism which will
facilitate compliance checking with existing regulations.

– The concepts and actions described in the contract (i.e. the vocabulary)
along the clauses of the contract (i.e. the rules) should be shareable across
the network, which is important for both discoverability and negotiation –two
defining aspects of smart contracts– by human and autonomous agents.

– It should be able to represent the actions coded in the smart contract [9],
the duties and powers arising from the contract [14], and the meta-rules
governing it (e.g. regulation on financial activities, Anti-Money Laundering
or consumer protection).

In our previous work [8] we describe Mercury, a language to capture regu-
lations for the purpose of compliance checking, alongside a methodology [4] to
capture legal knowledge and translate it to OWL [5]. Mercury is based on the
Semantics for Business Vocabulary and Business Rules [26] (SBVR), but the lan-
guage of smart contracts should not forcibly be based on SBVR, as long as it can
be mapped to a logical formalism, e.g. OWL, where reasoning on compliance is
feasible.

In a recently published technical report, English et al. [13] investigated how
distributed ledger technologies and the Semantic Web can a↵ect one another.
Indeed, the blockchain can provide secure resource identifiers (by ensuring au-
thenticity, human-readability, and decentralisation), and ontologies can provide
a unified way to understand blockchain concepts between humans, and exposing
blockchain data according to an ontology enables the interlinking with other
linked data and to perform reasoning.

Our proposal improves transparency, which is one of the major luring qual-
ities of distributed ledgers, and a determining factor of the trust-less trust in
the network. But doubt rises when it comes to the trust in the fact that the
contract, as written by the lawyer, was correctly translated into code, i.e. the
trust in the fact operational semantics faithfully represent denotational seman-
tics. One may argue that this trust can be guaranteed if there is a mechanism G
that automatically generates code from prose and/or a mechanism C, potentially
the inverse of G, that proves the correspondence of the code to the prose, but a
closer inspections shows that:

1. There is evidence from the literature that G and C can exist, especially
from [20] and ⌧ -Chain [6]. Indeed, if the vision of ⌧ -Chain is possible, then
there is an opportunity to go directly from denotational to operational se-
mantics using our approach, but this may imply the restriction of said trust
to one specific distributed ledger technology.



2. It is not really clear, at least for us, if G and C exist for shared ledgers that
use stack-based languages. This is an open question that deserves closer
attention, and can have one of two clear answers:
(a) It is possible, or practically feasible, which is great news for everyone, or
(b) It is impossible, or practically infeasible. Then it is only reasonable to

ask: is the existence of G and C a prerequisite for the establishment of

said trust? We conjecture that it is not, for two reasons:
i. The implementation processes of existing financial contracts in the

form of software is already opaque, especially to the consumer, and
our proposed approach would only facilitate transparency.

ii. Trust can be gained through the establishment of reputation: the
better you are in e↵ectively transforming your specification to code,
the more reputable you are; the more reputable you are, the more
trustworthy you are perceived to be.

5 Conclusion

In this position paper, we expressed our point of view on how trust in smart con-
trast, from a financial institution’s point of view, can be enabled. It is true that
cryptographic guarantees are enablers of, and integral to, trust in distributed
ledger technology, but we argue that another kind of trust is needed; one that is
established by a process involving lawyers.

We showed how distributed ledger technologies can vary on a deep technical
level, which led to the development of tools and abstractions to help developers
in programming smart contracts. These developments are essential for the tech-
nological ecosystem, but we show how most of the existing work do not take into
account compliance with existing (and ever growing) regulations.

To that end, we set a list of criteria for a language necessary for the develop-
ment of contracts, executed on the ledger, or not, that is close to the legal prose,
transparent, and rooted in formal logic. We also identify a key research challenge,
which is the ability to translate the aforementioned language to executable code.
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Abstract. Smart contracts in Ethereum are executed by the Ethereum
Virtual Machine (EVM). We defined EVM in Lem, a language that can
be compiled for a few interactive theorem provers. We tested our defini-
tion against a standard test suite for Ethereum implementations. Using
our definition, we proved some safety properties of Ethereum smart con-
tracts in an interactive theorem prover Isabelle/HOL. To our knowledge,
ours is the first formal EVM definition for smart contract verification
that implements all instructions. Our definition can serve as a basis for
further analysis and generation of Ethereum smart contracts.

1 Introduction

Ethereum is a protocol for executing a virtual computer in an open and dis-
tributed manner. This virtual computer is called the Ethereum Virtual Machine

(EVM). The programs on EVM are called Ethereum smart contracts. A deployed
Ethereum smart contract is public under adversarial scrutiny, and the code is not
updatable. Most applications (auctions, prediction markets, identity/reputation
management etc.) involve smart contracts managing funds or authenticating ex-
ternal entities. In this environment, the code should be trustworthy.

The developers and the users of smart contracts should be able to check the
properties of the smart contracts with widely available proof checkers. Our EVM
definition is written in Lem, which can be translated into popular interactive
theorem provers Coq [1], Isabelle/HOL [19] and HOL4 [23]. We used our EVM
definition and proved safety properties of some smart contracts in Isabelle/HOL.

Our contributions are as follows:

– we gave a formal specification of the interface between a smart contract
execution and the rest of the world (Sec. 4);

– we defined EVM in a way portable to di↵erent interactive theorem provers
(Isabelle/HOL and HOL4) and a programming language OCaml, during
which we found some subtle di↵erences between the specification (the Yellow
Paper [26]) and the implementations (Sections 5 and 6);

– we tested the executable part of our EVM definition against the VM test
suite, which validates existing Ethereum node implementations (Subsec-
tion 5.3); we found unsearched corner cases in the test suite;

– we used our EVM definition to prove invariants and safety properties of
Ethereum smart contracts (Sec. 7).



2 Choice of the Goal and the Tool

2.1 Goal: Which Programming Language to Formalize

Considerations around Solidity Although ultimately all Ethereum smart
contracts are deployed as EVM bytecode, the bytecode is rarely directly writ-
ten. The most popular programming language Solidity [3] has a rich syntax but
no specification. The only definition of Solidity is the Solidity compiler imple-
mentation, which compiles Solidity programs into EVM bytecode.

The Solidity compiler is written in C++. Importing the C++ code in a theorem
prover is nearly impossible because the definition of the whole C++11 language
has not been formalized although some of the hardest aspects of the language
have been addressed: concurrency [6], inheritance [21] etc.

It is feasible to verify a compiler with optimization (e.g. CompCert [14] and
CakeML [13]). Something similar for Solidity would require formalization of both
Solidity and EVM before correctness of the compiler can be stated.

Considerations on EVM There are drawbacks of verifying EVM bytecode:

– most developers and users do not read EVM bytecode;
– the EVM architecture might become obsolete after the protocol adopts one

of the proposed new architectures (EVM 1.5 that introduces function calls
or EVM 2.0 which is based on WebAssembly [4]).

The first point can be, in the future, mitigated by translating static assertions in
Solidity into EVM bytecode. The second point is, in fact, milder compared with
the fast changes of the Solidity compiler. When the virtual machine architecture
changes, all Ethereum implementations need to implement the change. This
makes EVM change slower than the Solidity compiler.

EVM is an attractive formalization target. It is a stack-machine with a sim-
ple instruction-encoding and fully sequential execution. The simplicity of the
EVM architecture resulted in just over 2,000 lines of formal definition. EVM
has an English specification called the Yellow Paper (Fig. 1) clear enough to
allow multiple implementations to be developed independently1. Also, since any
disagreements among implementations hurt the availability of the network, the
community has implemented test suites to compare EVM implementations. We
use one of these test suites to test our EVM definition.

2.2 Tool: Formalization in Which Language

We intend our EVM definition as a basis for smart contract verification. The
verification should be done in a precise manner. Model checkers are not capable
of doing this because they cannot treat the huge state space: a smart contract can
store up to 2256 256-bit machine words permanently (the resource usage is limited

1 Several entities develop Ethereum clients in Python, C++, Rust, Java, Scala and Go,
and each contains its own EVM implementation.



0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256 unless otherwise noted.

Value Mnemonic � ↵ Description

0x01 ADD 2 1 Addition operation.
µ0

s[0] ⌘ µs[0] + µs[1]

...

0x08 ADDMOD 3 1 Modulo addition operation.

µ0
s[0] ⌘

(
0 if µs[2] = 0

(µs[0] + µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject
to the 2256 modulo.

Fig. 1. A short excerpt from the Yellow Paper [26]. The symbol � (resp. ↵) stands
for the number of deleted (resp. added) stack elements. µs[i] is the i-th stack element
before the instruction execution. µ0

s[i] is the i-th stack element afterwards.

only economically). Such big state spaces can better be dealt with interactive
theorem provers. Instead of specifying EVM in one particular theorem prover, we
chose a framework called Lem [16] because definitions in Lem can be translated
into some popular theorem provers: Coq [1], Isabelle/HOL [19] and HOL4 [23].

One potential alternative is the K-Framework [22]. The K-Framework is a
tool specifically engineered for defining programming languages. We chose Lem
and its translation targets for their larger user base2 and their longer history.

3 A Brief Description of the Ethereum Virtual Machine

Some of our design choices and challenges can be described only after an overview
of EVM. We just describe EVM as a state machine that executes programs. We
omit the underlying techniques that support distributed execution.

3.1 States

In EVM, apart from several global parameters, most states are stored in ac-
counts. EVM has a partial map from addresses (160-bit words) to account states.
An account state contains code, storage, nonce and the balance. The code is a
sequence of bytes. The storage is a mapping from a machine word (an EVM
machine word has 256 bits) to a machine word. The nonce is an ever-increasing
machine word. The balance is also a machine word, representing some transfer-
able value that can be paid as fees to run EVM. When the code is not empty,

2 The Coq users’ mailing list has 1,404 subscribers while the K-Framework’s has 127
at the time of writing.



the code controls the account; such an account is called a contract. Otherwise,
the account is controlled by the holder of a private key corresponding to the
address; such an account is called an external account. The code, when exists,
encodes a sequence of instructions. Instructions are all encoded in a single byte
except for the PUSH instructions, which contain immediate values.

3.2 State Transitions

An external account can initiate a transaction either by creating a contract or
by calling an account. Once a transaction is initiated, the whole state transition
of EVM is deterministic. We do not describe the contract creation by an external
account because a contract’s state after creation is publically checkable.

Both external accounts and contracts can call an account. When an account
calls an account, the call is accompanied with transferred balance, gas, and data.
The transferred balance is deposited to the called account. The gas regulates the
resource consumption during the call. When the called account is an external
account, a simple balance transfer happens. Otherwise, when the called account
is a contract, after the balance transfer, the called contract’s code is executed.
The code execution can alter the storage of the executing account. The execution
can read all accounts’ balances and codes.

The resource consumption of the code execution is capped by the amount
of gas that the initiating external account pays for. Executing an instruction
consumes some amount of gas. When the gas is exhausted, the execution fails
(out-of-gas failure). Such failures revert all state changes performed during the
current call, except gas consumption.

A contract can call an account by executing the CALL instruction. The ensuing
balance transfer and code execution belong to the same transaction as the calling
code execution. The calling contract can limit the resource consumption in the
called contract by choosing the amount of gas passed on. When the inner call
fails, the side-e↵ects of the inner call is reverted (except gas consumption) but
the side-e↵ects of the outer call remains intact. The outer call is informed of
such a failure through a return value of the CALL instruction.

A transaction belongs to a block. A block is a unit of agreement among
Ethereum nodes. EVM has special instructions that reads the block number and
the cryptgraphic hash values of some previous blocks. Since a block specifies a
previous block but not a unique successor, blocks in the network form a tree in
general, but, as far as the states of EVM are concerned, only one branch in the
tree matters. Because of this, we can think of EVM as a sequencially executed
machine.

4 Interface of a Contract Invocation

4.1 Boundary between the System and the Environment

We are interested in propositions of the form: whatever the environment does,
the system responds in a desired manner. Before we try to specify the desired



behavior, we need to identify the system and the environment. The choice is not
straightforward because multiple parties are involved in EVM.

One way is to say that the system is the contract. In that case, the envi-
ronment contains anything out of EVM and all accounts on EVM except the
contract under verification. In our development, the system is a single contract
invocation, which is even narrower than a single account (Fig. 2 (b)). The dif-
ference can be seen in the following scenario. The environment can call into the
contract. The contract can reply by calling an account. The environment can,
depending on the states of accounts that we do not control, call our contract
again. This is called reentrancy. During reentrancy, the storage and the balance
of our contract might change. We chose to model the reentrancy as part of the
environment. We explain this choice in Subsection 6.3.

System

other 
contractour contract

call

call

return

call

return

return

System

other 
contractour contract

call

call

call

return

return

return

our contract

(a) (b)

Fig. 2. Di↵erent choices of system-environment boundaries during reentrancy. Both
pictures describe the same situation, but have di↵erent boundaries between the system
and the environment. (a) When the system is our contract, the reentrant call is a part
of the system. (b) When the system is a single invocation of our contract, the reentrant
call is a part of the environment. Both are sound, but we chose (b) because it matches
the program sytax where CALL instructions are followed by the next operations in the
same message call, not the next operations in the reentrant call.

4.2 Input and Output of a Deployed Ethereum Smart Contract

In Subsection 4.1, we have set the boundary between the smart contract and
the environment. Next, we identify their interaction. The specification of the
interface is particularly important because it can be used to specify higher level
languages for Ethereum smart contracts. Our most concrete contribution is our



EVM definition in Lem, so we show some snippets in this section and explain
the syntax.

The interaction between the contract and the environment always starts with
the envrionment’s call into the contract. The environment can call into the con-
tract with the following information:
type call env = h|
callenv gaslimit : w256; (⇤ the current invocation’s gas limit ⇤)
callenv value : w256; (⇤ the amount of Eth sent along⇤)
callenv data : list byte; (⇤ the data sent along ⇤)
callenv caller : address; (⇤ the caller’s address ⇤)
callenv timestamp : w256; (⇤ the timestamp of the current block ⇤)
callenv blocknum : w256; (⇤ the block number of the current block ⇤)
callenv balance : address ! w256; (⇤ the balances of all accounts. ⇤) |i

The whole syntax defines a record type with seven fields. A value of call env

consists of seven values each accessible under a field name. The field names are
italicized. Each field name is annotated with a type of the associated value. w256

denotes the type of 256-bit machine words and address 160-bit machine words.
list byte is the type of lists of bytes. The arrow type address ! w256 is the
type of total functions that take an address and return a w256. This definition
is useful not only for reasoning about EVM bytecodes but also for desining high
level languages that would be compiled into EVM. Ethereum contracts written
in any language needs to take the combination of data above.

The environment can also make a called account return or fail after our con-
tract makes a call. Together, the environment’s possible actions are described
by the following variant type environment action, whose value can be the
label EnvironmentCall together with a value of call env, the label Envi-
ronmentRet together with a value of return result, or the label Environ-
mentFail. It is automatically understood that values with di↵erent labels are
di↵erent. This definition describes everything that can happen to an Ethereum
contract. If we have checked these cases, we have enumerated all possibilities.
type environment action =
| EnvironmentCall of call env (⇤ the environment calls the contract ⇤)
| EnvironmentRet of return result (⇤ the environment returns ⇤)
| EnvironmentFail (⇤ the environment fails ⇤)
We omit the definition of return result and many other symbols. The whole
formalization is publicly available3.

The contract can also make its move: calling another account, making a del-
egate call, creating a contract, failing, destroying itself, or returning. A delegate

call runs a potentially di↵erent account’s code on the caller’s account.
type contract action =
| ContractCall of call arguments (⇤ calling an account ⇤)
| ContractDelegateCall of call arguments (⇤ library call ⇤)
| ContractCreate of create arguments (⇤ deploying a contract ⇤)
3 https://github.com/pirapira/eth-isabelle/tree/wtsc01



| ContractFail (⇤ failing back to the caller ⇤)
|ContractSuicide (⇤ destroying itself and returning to the caller ⇤)
| ContractReturn of list byte (⇤ returning to the caller ⇤)
This definition describes everything that an Ethereum contract can do. When a
high level language is designed for Ethereum, it’s desirable that the language can
cause all of these actions. Moreover, since the input-output interface is defined in
an interactive theorem prover, the actions can be universally (8) or existentially
(9) quantified in logical formulas that specify Ethereum smart contracts.

5 Formalizing the Deterministic Contract Execution

The Yellow Paper [26] specifies EVM’s behavior uniquely for all possible inputs
(either a contract creation or a message call) coming from external accounts.
After no state transitions, the resulting state is left ambiguous. The original
purpose of such determinism is to prevent the nodes from disagreeing, but the
determinism also simplifies the formalization. We were able to formalize consec-
utive execution of instructions in our contract as a total function that produces a
state. The deterministic definitions of the program semantics occupy 2,000 lines
of Lem code. The determinism also made it straightforward to test this part of
the EVM definition against a standard test suite (Subsection 5.3)4.

We initially tried to implement EVM available in the latest Ethereum net-
work. During the VM tests we found that EVM should price instructions di↵er-
ently depending on block numbers, so we modeled this as to pass the tests.

5.1 Defining Execution Contexts

During the formalization, we have identified the runtime state of EVM. While
EVM is executing an account’s code, EVM has access to the stack, the memory,
the memory usage counter, the storage, the program counter, the balances of all
accounts, the caller, the value sent along the current call, the data sent along
the current call, the initial state kept for reverting into, the external account
that originated the transaction, the codes on all addresses, the current block,
the remaining gas, existence of accounts, and the list of touched storage indices.
Everything except the last one is necessary for EVM execution. The last piece
spares enumerating all storage indices while testing. These data are packed into
a record type variable ctx. Moreover, EVM can read the program and the
address of the currently running contract. These data are packed into a record
type constant ctx.

An instruction can result in the following cases:
type instruction result =

| InstructionContinue of variable ctx (⇤ the execution continues. ⇤)
| InstructionAnnotationFailure (⇤ annotation was false. ⇤)
4 If nondeterminism existed in the EVM execution, at least, we would need to choose
a representation of nondeterminism that works both in interactive theorem provers
and in OCaml.



| InstructionToEnvironment of

contract action (⇤ the contract’s move ⇤)
⇤ storage (⇤ the new storage content ⇤)
⇤ (address ! w256) (⇤ the new balance of all accounts ⇤)
⇤ list w256 (⇤ the list of possibly changed storage indices ⇤)
⇤ maybe (variable ctx ⇤ integer ⇤ integer) (⇤ continuation ⇤)

The asterisk ⇤ composes the type of tuples.

5.2 Defining Deterministic Contract Execution

Using the above definitions, we can define a function that operates an instruction
on the execution environments:
val instruction sem : variable ctx ! constant ctx ! inst !
instruction result

let instruction sem v c inst1 =
subtract gas (meterGas inst1 v c)
(match inst1 with

| Arith ADD ! stack 2 1 op v c (fun a b ! a + b)
| Arith ADDMOD ! stack 3 1 op v c

(fun a b divisor !
(if divisor = 0 then 0
else word256FromInteger ((uint a + uint b) mod (uint divisor))))

...
end)

where meterGas calculates the exact gas consumption of the executed instruc-
tion. We can repeat the semantics of single instructions to define the semantics
of a whole program (JUMP instruction is not special because all instructions,
including JUMP, change the program counter).

The type program result is similar to instruction result. The program
semantics takes artificial step counters that disallow infinite execution because,
in Isabelle/HOL, every function must be provably terminating5. This does not
cause imprecision because any actual execution can be simulated with a su�-
ciently large step counter value.
val program sem : variable ctx ! constant ctx ! int ! nat !
program result

During the modeling, we found that the Yellow Paper computes gas di↵erently
from the implementations. The subtlest case was the computation of gas for
memory accesses: when a contract accesses the memory on addresses spanning
from 2256 � 255 to 1, the gas calculation di↵ered in the Yellow Paper and in
implementations. The Yellow Paper used 1 as the maximal touched address while
all checked implementations used 2256 + 1 instead. Since all implementations
agreed, we filed a fix in the Yellow Paper.

5 We can guarantee termination by the gas, but the proof is non-trivial (currently 980
lines of Isabelle code).



5.3 Testing the Deterministic Contract Interpreter

We tested our definition against a test suite called VM tests [2]. The test suite
(together with other test suits) keep di↵erent Ethereum implementations con-
formant. We used VM tests to ensure conformance of our EVM definition. Lem
automatically translated the definition into OCaml. The OCaml translation was
then combined with a test case runner we wrote in OCaml (Fig. 3).

Contract 
Interpreter

Contract 
Interpreter

Contract 
Interpreter

Bytecode

Nondeterministic 
Environment

Desired 
Property

⊢

Proof

Test Runner

VM  
Test Suite

Other EVM 
Implementations

extractextract
validate

Lem Isabelle/HOLOCaml

Fig. 3. Our Lem definition can be extracted into OCaml and Isabelle/HOL. We tested
the OCaml extraction against the standard VM test suite. Using the Isabelle/HOL
extraction, we proved safety properties about some bytecodes. In this figure, the VM
test suite and other EVM implementations are not our contributions.

During the testing, we uncovered problems like:

– wrong word-to-integer conversion during ADDMOD in our EVM definition;
– di↵erent endianness between OCaml extraction and Isabelle/HOL extrac-

tion, due to our wrong direction; and
– small mistakes in the Yellow Paper, in most cases about modulo-2256.

The number of successful test cases is 40,619 while no tests fail. We skipped
24 test cases because they involve running multiple contracts, and we chose
to model only a single contract’s execution deterministically. Running these 24
cases would involve major enhancements in our test runner: emulating multiple
instances of our EVM model and communication among them.

In addition, we measured the code coverage of the VM test suite on the
generated OCaml code. We found that DELEGATECALL instruction is never called,
that CALL instruction is never called with insu�cient balance to be transferred,
that some instructions were never called with insu�cient stack elements, and
that the gas calculation after the latest changes is not tested. Although recent
protocol changes are often tested in other test suites, the VM test suite can be
complemented with these cases.

6 Formalizing the Nondeterministic Environment

We define the nondeterministic environment as a binary relation between a
prestate of type (account state * program result) and a poststate of type



(account state * variable ctx). This binary relation encodes the environ-
ment’s freedom. The binary relation is parametrized with an invariant (to be
speculated by the verification practitioner) of the contract under verification,
which limits the state changes on the contract during reentrancy. If this limita-
tion makes the same speculated invariant provable, the invariant can be deemed
established following an informal argument given in Subsection 6.3.

6.1 Implicit Balance Changes

We assume that the balances of accounts change freely while our contract is
not executed. This assumption subsumes the payment for the gas. The storage
of other accounts might change too. However, the balance of our contract is
assumed not to decrease when there are no calls being executed on it6.

On the other hand, the balance of our contract might increase when another
account executes SUICIDE instruction, specifying our account as the recipient of
the remaining balance. So the environment can freely increase the balance of our
contract. We are assuming that the balance increase does not overflow (which
seems to hold currently because the total balance of all accounts is below 280

while the balances can be counted up to 2256 � 1).

6.2 Gas Consumption During Calls

When our contract calls an account, the available amount of gas might decrease.
We modeled this as a completely nondeterministic change. This treatment ad-
mits the actual gas decrease as one possibility, and it shortens the proof goals
during brute-force proving. Without this treatment, during the symbolic execu-
tion described in Sec. 7, we saw the symbolic states grow rapidly because the
remaining gas was represented as a long sequence of subtractions. With the non-
deterministic choice, the remaining gas in the symbolic state is reduced into one
variable after each call.

6.3 Modeling of Reentrancy as an Adversarial Environment’s Step

We have freedom: the nested execution under reentrancy can either be a part
of the system or the environment. The choice influences the proof structure. If
the reentrancy is part of the system, proofs of safety properties need to explore
all possibilities in the nested reentrant calls. If the reentrancy is part of the
environment, the reentrancy is an adversarial step that changes the account
state in some arbitrary ways. We chose the latter way because this matches
better with the syntax of EVM bytecode, and it serves as the first approximation
before building a bigger EVM definition involving call stacks.

We assume that the reentrancy can change the contract’s account state (the
balance and the storage) following a speculated invariant. Using this assumption,

6 This property can be established only by checking all lines in the Yellow Paper that
changes the balance.



we prove the same invariant on the outer call. If we finish proving this, we can
perform mathematical induction over the number of nesting reentrancy to check
that all message calls keep the invariant. This mathematical induction has not
been formalized in any interactive theorem provers only because substantial
development is required before stating the goal.

6.4 Cleanup of an Account after Self-Destruction

When a contract executes SUICIDE instruction, the storage and the code of the
account are cleared not immediately but at the end of a transaction. The timing
of this cleanup is determined by the adversarial environment. However, we know
that the cleanup does not occur while a contract is still running.

7 Example Verification of Smart Contracts

To show the utility of our definitions, we have developed three example proofs
in Isabelle/HOL.

Invariant of a Program that Always Fails As the shortest example, we prepared a
smart contract that always fails. We proved that the code remains intact forever;
in other words the contract does not execute SUICIDE operations.

Invariant of a Program that Fails on Reentrance The next example features reen-
trancy, which enabled an external account “to put ⇠$60M under her control” [5]
during “the DAO” incident, where a coding mistake in a contract allowed leakage
of the fund. We implemented a contract (Fig. 4) that calls an account but fails
on reentrance. We proved that its storage values always stay within the specified
values (Fig. 5) even when reentrant calls are attempted.

abbreviation fail_on_reentrance_program :: "inst list"
where
"fail_on_reentrance_program ==
Stack (PUSH_N [0]) # Storage SLOAD # Dup 1 # Stack (PUSH_N [2]) #
Pc JUMPI # Stack (PUSH_N [1]) # Arith ADD # Stack (PUSH_N [0]) #
Storage SSTORE # Stack (PUSH_N [0]) # Stack (PUSH_N [0]) #
Stack (PUSH_N [0]) # Stack (PUSH_N [0]) # Stack (PUSH_N [0]) #
Stack (PUSH_N [0xabcdef]) # Stack (PUSH_N [30000]) # Misc CALL #
Arith ISZERO # Stack (PUSH_N [2]) # Pc JUMPI # Stack (PUSH_N [0]) #
Stack (PUSH_N [0]) # Storage SSTORE # Misc STOP # []"

Fig. 4. An Ethereum smart contract that calls an account but fails on reentrancy. The
expression in this figure defines a list of instructions in Isabelle/HOL. See the Yellow
Paper [26] for intuitive descriptions of instructions.



inductive fail_on_reentrance_invariant :: "account_state ) bool"
where
depth_zero:
"account_address st = fail_on_reentrance_address =)
account_storage st 0 = 0 =)
account_code st = program_of_lst

fail_on_reentrance_program program_content_of_lst =)
account_ongoing_calls st = [] =) account_killed st = False =)
fail_on_reentrance_invariant st"

| depth_one:
"account_code st = program_of_lst

fail_on_reentrance_program program_content_of_lst =)
account_storage st 0 = 1 =)
account_address st = fail_on_reentrance_address =)
account_ongoing_calls st = [(ve, 0, 0)] =)
account_killed st = False =)
vctx_pc ve = 28 =) vctx_storage ve 0 = 1 =)
vctx_storage_at_call ve 0 = 0 =)
fail_on_reentrance_invariant st"

Fig. 5. An invariant of the contract that fails on reentrancy, expressed in Isabelle/HOL.
The whole invariant is a disjunction of two clauses: depth zero holds when the contract
is not running while depth one holds when the contract has called an account.

Safety Property of a Compiled Program We proved a safety property of a realistic
Ethereum contract with 501 instructions produced by the Solidity compiler. The
safety property states that, if the storage has a flag set, only the owner recorded
in the storage can decrease the balance or change the storage.

The proof is a brute-force symbolic execution in Isabelle/HOL. The proof
contains repetitive 5,000 lines. It takes three hours for Isabelle to check the proof.
There is huge room of improvements. Since the contract contains no loops, it
should be possible to automate the whole proof. The proof checking time would
be much shorter with more advanced techniques that appear in the next section.

8 Related Work

The idea and the techniques in this paper are not new, except that we apply these
to EVM. Boyer and Yu [9] used a theorem prover Nqthm to model MC68020
processor, and checked correctness of a binary search implementation. Fox [10]
modeled the ARM6 micro-architecture, which is far more complex than EVM, in
HOL and validated it against the instruction set architecture. The deterministic
part of our EVM definition happens to be in the form of functional big-step
semantics [20] although our proof development is not advanced enough to enjoy
its merits. The idea of combining theorem proving and testing is not new either
even in the industry [7].



The literature suggests our future paths as well. Myreen, Fox and Gordon [18]
defined Hoare logic for ARM machine code. Myreen, Gordon and Slint [17] fur-
ther developed techniques for decompiling machine code with loops into recursive
HOL functions. The approach of Kennedy et al. [11] is to formalize the machine
code and then to build gradually structured programming method in Coq. Alter-
natively, we might try to build a higher level language that compiles into EVM.
Jinja (Jinja is not Java) [12] demonstrates language specification and implemen-
tation in Isabelle/HOL. CakeML [13] is a programming language defined in Lem
with a verified compiler into x86-64.

Some automatic analysis tools have been developed for Ethereum smart con-
tracts. Oyente [15] implements abstract interpretation of EVM in Python with
constraint solving using Z3. The tool can automatically detect several classes of
vulnerabilities with false positives. Removing these classes of vulnerabilities does
not guarantee lack of bugs. The tool does not implement all instructions. Bhar-
gavan et al. [8] define translations from a fragment of Solidity and from EVM
into F⇤, a functional programming language with a rich type system. They can
detect diversion from certain programming disciplines in Solidity. They can also
estimate an upper bound of gas consumption of an EVM program. They do not
mention testing their translations against implementations7.

9 Challenges and Future Work

Currently, verifying a realistic contract take around three hours on a Lenovo
Ideapad 500S. Most of the time is spent in out-of-gas failures at various points
in the program. One way to improve the situation is to set up a semantics that
squashes all out-of-gas failures as a single case.

Another direction is to make the reasoning compositional. In other words,
we should enable carrying over verification of small program snippets into verifi-
cation of larger programs. This involves developing a syntax for properties (pro-
gram logics) that is robustly concise during the compositional reasoning. Some
program logics for machine code exist: e.g. Tan and Appel [24] and Myreen [18].

We have not tested the nondeterministic parts of our development. Also
we have not validated our development against the blockchain history of the
Ethereum network. The executable part of our model is considerably smaller
than the whole EVM. If we model the whole EVM, we can try more standard
test suites on our EVM definition. The modelling of the whole EVM would be
the first step towards implementing a reference EVM out of our definitions.

The interactive theorem provers are designed for honest users. When a proof
assistant admits a theorem that looks like falsehood, the proof assistant is called
Pollack-super-inconsistent. Coq and Isabelle are known to be Pollack-super-
inconsistent with auxiliary definitions and notations [25]. When falsehood seems
provable, subtler errors can also creep in. For protecting users from malicious
verification results, we need faithful presentation of the proven properties.

7 One of the authors explained that the work had been done in a hackathon and the
codebase had not been touched since.



For verifying smart contracts in more human-friendly languages, we can ei-
ther formalize existing languages or build a compiler gradually in a theorem
prover. The first approach poses the burden of developing and maintaining an
up-to-date machine-readable definition of the language. The second approach
poses the burden of integration with the ecosystem, where the contracts need to
interface with JavaScript libraries and where developers need to be familiarized.

10 Conclusion

We defined EVM so that interactive theorem provers can reason about Ethereum
smart contracts. Our EVM definition contains all instructions. We used our
EVM definition in Isabelle/HOL and proved safety properties and invariants of
Ethereum contracts in the presence of reentrancy. As a side e↵ect, we discovered
several problems in the specification; we requested eleven fixes to the Yellow
Paper. We found thirteen code paths in our model that the VM test suite did not
touch. We demonstrated formal executable specification is e↵ective for verifying
smart contracts, for testing the specification, and for measuring code coverage
of virtual machine tests. We expect our development to be a basis for more
sophisticated smart contract verification frameworks and for verified compilers
from/to EVM bytecode.
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Christian Reitwießner and the anonymous referees for their time and valuable
comments on this paper.
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A Proof-of-Stake protocol

for consensus on Bitcoin subchains

Massimo Bartoletti, Stefano Lande, and Alessandro Sebastian Podda

Università degli Studi di Cagliari, Italy

Abstract. Although the main purpose of the Bitcoin blockchain is to
record currency transfers, Bitcoin transactions can also carry a few bytes
of metadata. Smart contracts built upon Bitcoin exploit this feature to
store a tamper-proof historical record of their transactions. The sequence
of these transactions forms a subchain of the Bitcoin blockchain, which
usually does not interfere with the transfers of bitcoins recorded therein.
A subchain is consistent when it represents a legit execution of the smart
contract. A crucial issue is how to make it di�cult for an adversary to
subvert the execution of the smart contract by making its subchain in-
consistent. The current approaches either postulate that subchains are
always consistent, or give weak guarantees about their security (for in-
stance, they are susceptible to Sybil attacks). We propose a consensus
protocol, based on Proof-of-Stake, that incentivizes nodes to consistently
extend the subchain. We empirically evaluate the security of our proto-
col, and we show how to exploit it as the basis for smart contracts on
the Bitcoin blockchain.

1 Introduction

Recently, cryptocurrencies like Bitcoin [20] have pushed forward the concept of
decentralization, by ensuring reliable interactions among mutually distrusting
nodes in the presence of a large number of colluding adversaries. These cryp-
tocurrencies leverage on a public data structure, called blockchain, where they
permanently store and timestamp all the messages exchanged by nodes. Adding
new blocks to the blockchain (called mining) requires to solve a moderately dif-
ficult cryptographic puzzle. The first miner who solves the puzzle earns some
virtual currency (some fresh coins for the mined block, and a small fee for each
transaction included therein). In Bitcoin, miners must invert a hash function
whose complexity is adjusted dynamically in order to make the average time to
solve the puzzle ⇠10 minutes. Instead, removing or modifying existing blocks is
computationally unfeasible: roughly, this would require an adversary with more
hashing power than the rest of all the other nodes. If modifying or removing
blocks were computationally easy, an attacker could perform a double-spending
attack where he pays some amount of coins to a merchant (by publishing a suit-
able transaction in the blockchain) and then, after he has received the item he
has paid for, removes the block containing the transaction. According to the folk-
lore, Bitcoin would resist to attacks unless the adversaries control the majority
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of total computing power of the Bitcoin network. Even though some vulnerabil-
ities have been reported in the literature (see Section 4), in practice Bitcoin has
worked surprisingly well so far: indeed, the known successful attacks to Bitcoin
are standard hacks or frauds [16], unrelated to the Bitcoin protocol.

The idea of using Bitcoin and its blockchain as the basis for smart con-
tracts [22] — i.e., decentralized applications beyond digital currency — has been
explored by several recent works. For instance, [3,7] propose protocols for secure
multiparty computations and fair lotteries, Blockstore [8] is a key-value database
with get/set operations; CounterParty [11] extends Bitcoin with advanced finan-
cial operations (like e.g., creation of virtual assets, payment of dividends, etc.),
by embedding its own messages in Bitcoin transactions.

Although the Bitcoin blockchain is primarily intended to trade currency,
its protocol allows clients to embed a few extra bytes as metadata in transac-
tions. Besides the above-mentioned BlockStore and Counterparty, many other
platforms for smart contracts exploit these metadata to store a persistent, times-
tamped and tamper-proof historical record of all their messages [1,5]. Usually,
metadata are stored in OP_RETURN transactions [2], making them meaningless
to the Bitcoin network and unspendable. With this approach, the sequence of
platform-dependent messages forms a subchain, whose content can only be in-
terpreted by the nodes that execute the platform (we refer to them as meta-
nodes, to distinguish them from Bitcoin nodes). However, since the platform
logic is separated from the Bitcoin logic, a meta-node can append to the sub-
chain transactions with metadata which are meaningless for the platform —
or even inconsistent with the intended execution of the smart contract. As far
as we know, none of the existing platforms use a secure protocol to establish
if their subchain is consistent. This is a serious issue, because it either limits
the expressiveness of the smart contracts supported by these platforms (which
must consider all messages as consistent, so basically lose the notion of state), or
degrades the security of contracts (because adversaries can manage to publish
inconsistent messages, so tampering with the execution of smart contracts).

Contributions. We propose a protocol that allows meta-nodes to maintain a
consistent subchain over the Bitcoin blockchain. Our protocol is based on Proof-
of-Stake [6,18], since extending the subchain must be endorsed with a money
deposit. Intuitively, a meta-node which publishes a consistent message gets back
its deposit once the message is confirmed by the rest of the network. In partic-
ular, our protocol provides an economic incentive to honest meta-nodes, while
disincentivizing the dishonest ones. We empirically validate the security of our
protocol by simulating it in various attack scenarios. Notably, our protocol can
be implemented in Bitcoin by only using the so-called standard transactions1.

1 This is important, because non-standard transactions are discarded by peers run-
ning the o�cial Bitcoin client. A restricted group of miners accept non-standard
transactions (e.g., the Eligius community), but their mining power is quite limited.
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2 Bitcoin and the blockchain

Bitcoin is a cryptocurrency and a digital open-source payment infrastructure
that has recently reached a market capitalization of almost $16 billions2. The
Bitcoin network is peer-to-peer, not controlled by any central authority [20].
Each Bitcoin user owns one or more personal wallets, which consist of pairs of
asymmetric cryptographic keys: the public key uniquely identifies the user ad-
dress, while the private key is used to authorize payments. Transactions describe
transfers of bitcoins (B), and the history of all transactions, which recorded on a
public, immutable and decentralised data structure called blockchain, determines
how many bitcoins are contained in each address.

To explain how Bitcoin works, we consider two transactions T0 and T1, which
we graphically represent as follows:3

T0

in: · · ·
in-script: · · ·
out-script(T,�): verk(T,�)
value: v0

T1

in: T0

in-script: sigk(•)
out-script(· · · ): · · ·
value: v1

The transaction T0 contains v0B, which can be redeemed by putting on the
blockchain a transaction (e.g., T1), whose in field is the cryptographic hash of
the whole T0 (for simplicity, just displayed as T0 in the figure). To redeem T0,
the in-script of T1 must contain values making the out-script of T0 (a boolean
programmable function) evaluate to true. When this happens, the value of T0 is
transferred to the new transaction T1, and T0 is no longer redeemable. Similarly,
a new transaction can then redeem T1 by satisfying its out-script.

In the example displayed above, the out-script of T0 evaluates to true when
receiving a digital signature � on the redeeming transaction T, with a given key
pair k. We denote with verk(T,�) the signature verification, and with sigk(•)
the signature of the enclosing transaction (T1 in our example), including all the
parts of the transaction except its in-script.

Now, assume that the blockchain contains T0, not yet redeemed, when some-
one tries to append T1. To validate this operation, the nodes of the Bitcoin
network check that v1  v0, and then they evaluate the out-script of T0, by
instantiating its formal parameters T and �, to T1 and to the signature sigk(•),
respectively. The function verk verifies that the signature is correct: therefore,
the out-script succeeds, and T1 redeems T0.

Bitcoin transactions may be more general than the ones illustrated by the
previous example: their general form is displayed in Figure 1. First, there can be
multiple inputs and outputs (denoted with array notation in the figure). Each
output has an associated out-script and value, and can be redeemed indepen-
dently from others. Consequently, in fields must specify which output they are

2 Source: crypto-currency market capitalizations http://coinmarketcap.com
3
in-script and out-script are respectively referred as scriptPubKey and scriptSig in the
Bitcoin documentation.

http://coinmarketcap.com
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T

in[0]: T0[out0]
in-script[0]: W 0

...
out-script[0](T0

0,w0): S0
value[0]: v0

...
lockTime: n

Fig. 1: General form of transactions.

redeeming (T0[out0] in the figure). Similarly, a transaction with multiple inputs
associates an in-script to each of them. To be valid, the sum of the values of all
the inputs must be greater or equal to the sum of the values of all outputs. In its
general form, the out-script is a program in a (not Turing-complete) scripting lan-
guage, featuring a limited set of logic, arithmetic, and cryptographic operators.
Finally, the lockTime field specifies the earliest moment in time (block number
or Unix timestamp) when the transaction can appear on the blockchain.

The Bitcoin network is populated by a large set nodes, called miners, which
collect transactions from clients, and are in charge of appending the valid ones to
the blockchain. To this purpose, each miner keeps a local copy of the blockchain,
and a set of unconfirmed transactions received by clients, which it groups into
blocks. The goal of miners is to add these blocks to the blockchain, in order to
get a revenue. Appending a new block Bi to the blockchain requires miners to
solve a cryptographic puzzle, which involves the hash h(Bi�1) of block Bi�1,
a sequence of unconfirmed transactions hTiii, and some salt R. More precisely,
miners have to find a value of R such h(h(Bi�1)khTiiikR) < µ, where the value µ
is adjusted dynamically, depending on the current hashing power of the network,
to ensure that the average mining rate is of 1 block every 10 minutes. The goal
of miners is to win the “lottery” for publishing the next block, i.e. to solve the
cryptopuzzle before the others; when this happens, the miner receives a reward
in newly generated bitcoins, and a small fee for each transaction included in
the mined block. If a miner claims the solution of the current cryptopuzzle,
the others discard their attempts, update their local copies of the blockchain
with the new block Bi, and start mining a new block on top of Bi. In addition,
miners are asked to verify the validity of the transactions in Bi by executing the
associated scripts. Although verifying transactions is not mandatory, miners are
incentivized to do that, because if in any moment a transaction is found invalid,
they lose the fee earned when the transaction was published in the blockchain.

If two or more miners solve a cryptopuzzle simultaneously, they create a fork
in the blockchain (i.e., two or more parallel valid branches). In the presence of
a fork, miners must choose a branch wherein carrying out the mining process;
roughly, this divergence is resolved once one of the branches becomes longer
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than the others. When this happens, the other branches are discarded, and all
the orphan transactions contained therein are nullified.

Overall, this protocol essentially implements a “Proof-of-Work” system [12].

3 A protocol for consensus on Bitcoin subchains

We define the notions of subchain and consistency in Section 3.1. In Section 3.2
we describe our protocol to embed consistent subchains on the Bitcoin blockchain,
and we examine some of its properties in Section 3.3. Finally, in Section 3.4 we
show how to actually implement our protocol in Bitcoin.

3.1 Subchains and consistency

We assume a set A,B, . . . of clients, who want to append messages a, b, . . . to
the subchain. We denote with pay(v,B) a special message which represents a
payment of vB to participant B . When this message is on the subchain, it also
acts as a standard transaction on the Bitcoin blockchain, which makes vB in a
transaction of A redeemable by B .

A label is a pair containing a participant A and a message a, written A :a. A
subchain is a finite sequence of labels, written A1 :a1 · · ·An :an, that are embed-
ded in the Bitcoin blockchain. The intuition is that A1 has embedded the message
a1 in some transaction T1 of the Bitcoin blockchain, then A2 has appended some
transaction T2 embedding a2, and so on. Now, not all possible sequences of la-
bels form valid subchains: to define the consistent ones, we interpret subchains
as traces of a Labelled Transition System (LTS).

Formally, an LTS is a tuple (Q,L, q0,!), where:

– Q is a set of states, ranged over by q, q

0
, . . .;

– L is a set of labels, which in our case have the form A :a;
– q0 2 Q is the initial state;
– ! ✓ Q⇥ L⇥Q is a transition relation.

We require the transition relation ! to be deterministic, i.e. if q
A :a��! q

0 and

q

A :a��! q

00, then it must be q

0 = q

00.
The intuition is that the subchain has a state (initially, q0), and each message

sent by participants updates the state of the subchain according to the transition
relation. More precisely, if the subchain is in state q, then a message a sent by

A makes the state evolve to q

0 whenever q
A :a��! q

0 is a transition in the LTS.
Note that, since we are assuming the transition relation ! to be determin-

istic, branches cannot happen. However, for some state q and label A :a, it may

happen that there does not exist any state q

0 such that q

A :a��! q

0. In this case,
if q is the current state of the subchain, we want to make hard for a participant
(possibly, an adversary trying to tamper with the subchain) to append such
message. Informally, a subchain is consistent if it satisfies such condition, which
we formalise as follows.
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Definition 1 (Subchain consistency). We say that a subchain A1 :a1 · · ·An :an
is consistent whenever there exist q1, . . . , qn such that:

q0
A1:a1���! q1

A2:a2���! · · · An:an����! qn

Note that, if a subchain is consistent, then by determinism we have that the
state qn exists and is unique. In other words, a consistent sequence of messages
uniquely identifies the state of the subchain.

Similarly to Bitcoin, we do not aim at guaranteeing that a subchain is always
consistent. Indeed, also in Bitcoin a miner could manage to append a block
with invalid transactions: in this cases, as discussed in Section 2, the blockchain
forks, and the other miners must choose which branch to follow. However, honest
miners will neglect the branch with invalid transactions, so eventually (since
honest miners detain the majority of computational power), that branch will be
abandoned by all miners.

For subchain consistency we adopt a similar strategy: we assume that an

attacker can append a label A : a such that qn 6 A :a��!, so making the subchain
inconsistent. However, upon receiving such label, honest nodes will simply dis-
card it. To formalise their behaviour, we define below a function � that, given
a subchain ⌘ (not necessarily consistent), filters all the invalid updates. Hence,
� (⌘) is a consistent subchain.

Definition 2 (Branch pruning). We inductively define the endofunction �

on subchains as follows, where ✏ denotes the empty subchain:

� (✏) = ✏ � (⌘ A :a) =

(
� (⌘) A :a if 9q, q0 : q0

� (⌘)���! q

A :a��! q

0

� (⌘) otherwise

In order to model which labels can be appended to subchain without breaking
its consistency, we introduce below the auxiliary relation |=. Informally, given a
consistent subchain ⌘, the relation ⌘ |= A :a holds whenever the subchain ⌘ A :a,
obtained by appending A :a to ⌘, is still consistent.

Definition 3 (Consistent update). We say that A :a is a consistent update
of a subchain ⌘, denoted with ⌘ |= A :a, i↵ the subchain � (⌘) A : a is consistent.

3.2 Description of the protocol

Assume a network of mutually distrusted nodes N,N

0
, . . . , that we call meta-

nodes to distinguish them from the nodes of the Bitcoin network. Meta-nodes
receive messages from clients (also mutually distrusting) that want to extend
the subchain. Our goal is to allow honest participants (i.e., those who follow the
protocol) to perform consistent updates of the subchain, while disincentivizing
adversaries who attempt to make the subchain inconsistent.

To this purpose, we propose a protocol based on Proof-of-Stake (PoS). Namely,
we rely on the assumption that the overall stake retained by honest participants



A Proof-of-Stake protocol for consensus on Bitcoin subchains 7

1. Upon receiving an update request UR[A : a], a meta-node checks if it is con-
sistent. If so, it votes the request, and adds it to the request pool;

2. when � expires, the arbiter signs all the well-formed UR in the request pool;
3. all requests signed by the arbiter are sent to the Bitcoin miners, to be pub-

lished on the blockchain. The first to be mined, indicated with URi, is the i-th
message of the subchain.

Fig. 2: Summary of a protocol stage i.

is greater than the stake of dishonest ones4. The stake is needed by meta-nodes,
which have to vote for approving update requests. These requests are embedded
into Bitcoin transactions, which we denote by UR[A : a], meaning that A wants
to append the message a to the subchain. In order to vote an update request,
a meta-node must invests  B on it. A request needs the vote of a single meta-
node. The protocol requires meta-nodes to vote consistent updates only: namely,
in the subchain ⌘, a request UR[A : a] is voted only if ⌘ |= A :a5. To incentivize
nodes to vote their requests, clients pay meta-nodes a fee (smaller than ), that
can be redeemed when the update request is accepted by the network.

We define our protocol in Figure 2. It is organised in stages of duration �.
The actual value of � is discussed in Section 5. In each stage i, exactly one
transaction URi is appended to the subchain (and consequently, to the Bitcoin
blockchain). To cope with this issue, the protocol introduces the figure of the
arbiter T, a node of the network which is considered to be honest (we discuss
this hypothesis in Section 3.3). Through the arbiter, it is possible to implement
in Bitcoin the mechanism of choosing exactly one transaction to append to the
subchain, per stage, as well as ensuring this choice is random. We now describe
the main steps of the protocol.

At step 1 of the stage i of the protocol, a meta-node votes a request trans-
action. Besides paying  B (as detailed in Section 3.4), it also N has to confirm
a previous update in the subchain. Namely, N has to pay  B plus the client
fee to the meta-node N0 who appended to the subchain URj. The protocol limits
the choice of j to the C most recent URj, with C � 2. The value C is called
checkpoint o↵set, and let the protocol avoid the self-compensation attack shown
in Section 3.3. Therefore, j must be chosen as the maximum value such that: (i)
j < i; (ii) |i � j| < C; (iii) URj[A : a ] is consistent. This implements an incen-
tive to vote consistent updates only, since inconsistent ones are not confirmed.
If none of the last C updates in the subchain are consistent, then N chooses the

4 Note that a similar hypothesis, but related to computational power rather than stake,
holds in Bitcoin: there, honest nodes are supposed to control more computational
power than dishonest ones.

5 We are assuming that all meta-nodes agree on the Bitcoin blockchain; since ⌘ is a
projection of the blockchain, they also agree on ⌘.
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last update. Then, N adds UR[A : a ] to the request pool, i.e. the set of all voted
requests of the stage (which is emptied at the beginning of each stage).

At step 2, that is enabled when � expires, the arbiter T signs all well-formed
request transaction, (i.e., those respecting the format in Section 3.4).

At step 3, the meta-nodes send the request signed by the arbiter to the Bitcoin
network. The mechanism described in Section 3.4 ensures that only one signed
transaction in the request pool of stage i will appear on the blockchain. This
transaction is denoted as URi[A : a ] as is considered appended on the subchain.

3.3 Basic properties of the protocol

We now establish some basic properties of our protocol. In particular, we show
that the protocol imposes an upper-bound to the capabilities of the adversary. To
do this, we assume the network to be saturated (i.e., there are enough requests
to vote), and the honest nodes to control the majority of the total stake of the
network6, hereafter denoted by S.

Adversary power. An honest meta-node votes any request for which it has enough
stake, hence if its stake is s it votes � = s/ requests per stage. Consequently,
the rest of the network — which may include dishonest meta-nodes not following
the protocol — can vote at most (S � s)/ requests. So, we have:

Proposition 1. In a given protocol stage, the probability that an honest meta-
node with stake s updates the subchain is at least s/S.

Since we assume that honest meta-nodes control the majority of the stake,
Proposition 1 also limits the capabilities of the adversary:

Proposition 2. In a given protocol stage, if the honest meta-nodes have stake
s, then the probability that a dishonest meta-node updates the subchain is at most
(S � s)/S.

Although inconsistent updates are ignored by honest meta-nodes, their side
e↵ects as plain Bitcoin transactions cannot be revoked once they are included
in the Bitcoin blockchain. This is the case, e.g., of transfers of bitcoins due to
pay(v,B) messages. We show in the following how the incentive system in our
protocol reduces the feasibility of such inconsistent updates.

Assume that an adversary M manages to append 2 updates to the subchain,
the first with index j, and the second with index i > j. Suppose that the update
at index j is inconsistent, while the one at index i is consistent. Since M does not
follow the protocol, she can exploit URi to refund its  put on URj. Then, since
URi is consistent, the adversary will be refunded for the second  by another
honest meta-node. We call the above self-compensation attack.

Now, according to Proposition 2, if M has stake m (and the other meta-nodes
are honest), then she has probability at most m/S to extend the subchain in a

6 Under this assumption, meta-nodes can ensure that the arbiter is honest.
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given stage of the protocol. Since stages can be seen as independent events, and
since M has to publish at least 2 updates over the most recent checkpoint to
perform the attack, we obtain the following:

Proposition 3. The probability that an adversary with stake m succeeds in a
self-compensation attack is at most:

✓
C

2

◆
· µ2(1� µ)C�2

where C is the checkpoint o↵set, and µ = m/S.

Since the probability to publish inconsistent updates without losing  grows
with C, it is crucial to keep this value small. For instance, if µ = 0.1 an adversary
could perform the attack with probability bounded by 0.01 if C = 2, 0.027 if
C = 3, 0.0486 if C = 4.

Observe that if the attack succeeds once then the attack probability slightly
increases, since the stakem is charged by the client fees of the published updates.
This is not an issue if the fee is small compared to S.

Trustworthiness of the arbiter. In order to simplify the description of the proto-
col, we have assumed the arbiter T to behave honestly. However, our arbiter does
not play the role of a trusted authority: indeed, the update requests to be voted
are chosen by the meta-nodes and, once they are added to the request pool, the
arbiter is expected to sign all of them, without taking part on the validation nor
the voting. Since everyone can inspect the request pool, any misbehaviour of the
arbiter can be detected by the meta-nodes, which can proceed to replace it.

3.4 Implementation in Bitcoin

In this section we show how our protocol can be implemented in Bitcoin. A
transaction UR[A : a] at position i of the subchain is implemented as the Bitcoin
transaction URi in Figure 3a, where the out-script[0] is an unspendable script of
the form OP RETURN, with attached as metadata (a suitable encoding of) A :a.

Each transaction in the chain redeems the output out[1] of the previous
transaction in the subchain (pointed by in[2]) by providing the arbiter signature.
In this way, all UR in a protocol stage redeem the same output, making them
mutually exclusive; this ensures that only one update per stage will be mined.

The incentive mechanism is implemented through out-script[2]. The script
rewards the meta-node N0 that voted a preceding URj in the subchain. Therefore,
this output can be redeemed only by providing the signature of N0 . This output
pays back to N

0 a total amount of  B plus the client fee. The output out[3]

is only used for messages on the form pay(v,B), i.e. those which pay v to a
participant B (and whose input can be additionally provided by Feei).

All transactions must specify a lockTime n+1 (where n is the current Bitcoin
block number), so that they can be mined only after the n-th block is mined.
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Genesis

in: · · ·
in-script: · · ·
out-script(T,�): ver T(T,�)
value: 0.0001

URi

in[0]: Feei[out]
in-script[0]: sigC(•)
in[1]: Stakei[out]
in-script[0]: sigN(•)
in[2]: Confirmi�1[out1]
in-script[0]: sigT(•)
out-script[0](): OP_RETURN A :a
value[0]: 0
out-script[1](T,�): ver T(T,�)
value[1]: 0.0001
out-script[2](T,�): ver N0(T,�)
value[2]: + fee
out-script[3](T,�): ver B(T,�)
value[3]: vpay
lockTime: n+ 1

(a) (b)

Fig. 3: In (a), format of Bitcoin transactions used to implement our protocol.
In (b), a subchain mantained through our protocol. Since URi+2 contains an
inconsistent update, the meta-node that voted it is not rewarded.

The locktime avoids that a transaction signed by the arbiter before the others is
sent to Bitcoin miners beforehand, thus having a higher probability to be mined.

To initialize the subchain, the arbiter puts the Genesis transaction on the
Bitcoin blockchain. This transaction secures a small fraction of bitcoin, which
can be redeemed only with the arbiter signature. Its out is initially redeemed
by UR1, then transferred to each subsequent subchain update (see Figure 3b).
At each protocol stage, clients send incomplete UR transactions to the network.
These transactions contain only in[0] and out[0], specifying the client fee (plus
v in the case of pay(v,B)) and the message for the subchain. To vote, meta-
nodes add in[1], in[2] and out[2] to these transactions, to, respectively, put the
required  (from some Stakei), declare they want extend the last published up-
date Confirmi�1, and specify the previous update to be rewarded. All the in[2]

of transactions in a stage of the protocol must have a di↵erent value, to avoid
that an attacker can vote more URs with the same funds. After that, meta-nodes
ask clients to sign them. Before signing, clients perform some basic checks, e.g.
that fields have been initialized correctly, (so to avoid attempts to steal the fee).
Once voted by meta-nodes and signed by clients, URj are broadcast to the re-
quest pool. Finally, the arbiter signs all transactions respecting the protocol, so
that they can be mined.
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4 Evaluation of the protocol

In this section we evaluate the security of our protocol, providing some exper-
imental results. We also investigate how possible attacks to Bitcoin may a↵ect
subchains built on top of its blockchain.

Attack scenario. We assume an adversary who can craft any update (consistent
or not), and controls one meta-node M with stake µS, where µ 2 [0; 1] and S

is the total stake of the network7. We suppose that each meta-node can vote as
many update requests as possible, spending all its stake, and that the network
is always saturated with pending updates, which globally amount to the entire
stake of honest meta-nodes8. We also assume that M gets an additional extra
revenue r for each inconsistent update, modelling the case where she manages to
induce a victim to publish an inconsistent payment pay(r,M). The goal of M is
to append at least 2 updates to the blockchain (one of which inconsistent) every
C published updates. She can use any possible strategy to achieve this goal.

We simulate the protocol under the attack scenario described above. Each
simulation runs the protocol to generate a subchain with 10, 000 messages, set-
ting the client fee to 0.1 and the checkpoint o↵set to 3. To this purpose we use
Desmo-J [15], a discrete event simulator for Java.

Experimental results. Figure 4b measures the attacker revenue as µ increases. In
particular, it shows that if the stake threshold  is ten times greater than r, M
gains only if she owns at least ⇠40% of the global stake (i.e., µ � 0.4). Therefore,
under such assumption about the attacker stake, the security of our protocol is
comparable with that of the Bitcoin Proof-of-Work protocol [14]. Instead, if
 = r, the attacker needs only ⇠15% of the global stake to profit from the
attack. Figure 4a shows that, in the absence of attackers (µ = 0), the revenue of
honest nodes is essentially the client fee times the number of updates published,
as expected. Further, µ is below the threshold required to perform a profitable
attack, the revenue of honest nodes increases: this happens because inconsistent
updates voted by M reward honest ones, whereas the opposite cannot occur.
Summing up, our protocol is secure only if, for updates on the form pay(v,A),
we have that v  . Hence, if v is close to 0, the behaving dishonestly is not
economically advantageous.

Security of the underlying Bitcoin blockchain. So far we have only considered di-
rect attacks to our protocol, assuming the underlying Bitcoin blockchain to be se-
cure. However, although Bitcoin has been secure in practice till now, some works

7 Assuming a single adversary is not less general than having many non-colluding
meta-nodes which carry on individual attacks. Indeed, in this setting meta-nodes do
not join their funds to increase the stake ratio µ.

8 Note that saying the update queue is not always saturated is equivalent to model an
adversary with a stronger µ: this because honest meta-nodes cannot spend all their
stake in a single protocol stage, i.e. reducing their actual power. Thus, studying this
particular case will not give any additional contribution to the analysis.
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(a) (b)

Fig. 4: Revenue of honest nodes (a) and of the attacker M (b) for increasing
values of the attacker stake ratio µ. The curves represent di↵erent values of r/
(the ratio between the attack revenue r, given by inconsistent pay(r,M) updates,
and the cost of the vote).

have spotted some potential vulnerabilities of its protocol. These vulnerabilities
could be exploited to execute Sybil attacks [4] and selfish-mining attacks [13],
which might also a↵ect subchains built on top of the Bitcoin blockchain.

In Sybil attacks on Bitcoin, honest nodes are induced to believe that the
network is populated by many distinct participants, which instead are controlled
by a single malicious entity. This attack is usually exploited to quickly propagate
malicious information on the network, and to disguise honest participants in a
consensus/reputation protocol, e.g. by overwhelming the network with votes
of the adversary. In the selfish-mining attack [13], small groups of colluding
miners manage to obtain a revenue larger than the one of honest miners. More
specifically, when a selfish-mining pool finds a new block, it keeps it hidden
to the rest of the network. In this way, selfish miners gain an advantage over
honest ones in mining the next block. This is equivalent to keep a private fork
of the blockchain, which is only known to the selfish-mining pool. Note that
honest miners still mine on the public branch of the blockchain, and their hash
rate is greater than selfish miners’ one. Since, in the presence of a fork, the
Bitcoin protocol requires to keep mining on the longest chain, selfish miners
reveal their private fork to the network just before being overcome by the honest
miners. Eyal and Sirer in [13] show that, under certain realistic assumptions,
this strategy gives better revenues than honest mining: in the worst scenario
(for the adversary), the attack succeeds if the selfish-mining pool controls at
least 1/3 of the total hashing power. Rational miners are thus incentivized to
join the selfish-mining pool. Once the pool manages to control the majority of
the hashing power, the system loses its decentralized nature. Garay, Kiayias and
Leonardos in [14] essentially confirm these results: considering a core Bitcoin
protocol, they prove that if the hashing power � of honest miners exceeds the
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hashing power � of the adversary pool by a factor �, then the ratio of adversary
blocks in the blockchain is bounded by 1/� (which is strictly greater than �).
Thus, as � (the adversary pool size) approaches 1/2, they control the blockchain.

Although these attacks are mainly related to Bitcoin revenues, they can a↵ect
the consistency of any subchain built on top of its blockchain. In particular,
suitably adapted versions of these attacks allow adversaries to cheat meta-nodes
about the current subchain state, forcing them to synchronize their local copy of
the Bitcoin blockchain with invalid forks that will be discarded by the network
in the future. To protect against such attacks, meta-nodes should consider only
l-confirmed transactions. Namely, if the last published blockchain block is Bn,
they consider only those transactions appearing in blocks Bj with j  n � l.
This means that an attacker would have to mine at least l blocks to force the
revocation of a l-confirmed transaction. Rosenfeld [21] shows that, if an attacker
controls at most the 10% of the network hashing power, l = 6 is su�cient for
reducing the risk of revoking a transaction to less than 0.1%.

5 Discussion

We have proposed a protocol to securely form consensus on subchains, i.e. chains
of platform-dependent messages stored on top of the Bitcoin blockchain. Our
protocol incentivizes nodes to validate the messages before appending them to
the subchain, making economically disadvantageous for an adversary to append
inconsistent updates. In order to confirm this intuition we have performed some
simulations, which have measured the security of our protocol over di↵erent
attack scenarios, showing that, under conservative assumptions, its security is
comparable to that of Bitcoin (Section 4).

Performance of the protocol. As explained in Section 3.2, the protocol runs
in periods of duration �. Due to the mechanism for choosing the message to
append to the subchain from the request pool, the protocol can publish at most
one transaction per Bitcoin block. This means that a lower bound for � is the
Bitcoin block interval (⇠10mins). Note also that since we allow meta-nodes to
monitor the arbiter behaviour (e.g. to detect if it is trying to marginalize some
nodes), and since this requires the request pool to be shared and consistent
between all the nodes of the network, meta-nodes may want to verify that the
arbiter signs all voted requests in each protocol stage. Then, � needs to be
large enough to let each node synchronize the request pool with the rest of the
network. A possible approach to cope with this issue is to make meta-nodes
broadcast their voted updates, and to keep a list of other ones (considering only
those which satisfy the format of transactions, as in Section 3.4). More e�cient
approaches could exploit distributed shared memories [10,17].

Overcoming the metadata size limit. As noted in Section 3.4, we exploit OP_RETURN
unspendable scripts to embed metadata in Bitcoin transactions. Since Bitcoin
limits the size of such metadata to 80 bytes, this might not be enough to store
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the data needed by platforms. To overcome this issue, one can use distributed
hash tables [19] maintained by meta-nodes. In this way, instead of storing full
message data in the blockchain, OP_RETURN scripts will contain only the corre-
sponding message digests. The unique identifier of the Bitcoin transaction can
be used as the key to retrieve the full message data from the hash table.

Smart contracts over subchains. The model of subchains defined in Section 3.1,
based on LTSs, can be easily extended to model the computations of smart
contracts over the Bitcoin blockchains. A platform for smart contracts could
exploit our model to represent the state of a contract as the state of the subchain,
and model its possible state updates through the transition relation.

Implementing a platform for smart contracts would require a language for
expressing them. To bridge this language with our abstract model, one can pro-
vide the language with an operational semantics, giving rise to an LTS describing
the computations. Note that our assumption to model computations as a single
LTS does not reduce the generality of the system, since a set of LTSs, each one
modelling a contract, can be encoded in one LTS as their parallel composition.
If the language is Turing-complete, an additional problem we would have to face
is the potential non-termination. This issue has been dealt with in di↵erent ways
by di↵erent platforms. E.g., the approach followed by Ethereum [9] is to impose
a fee for each instruction executed by its virtual machine. If the fee does not
cover the cost of the whole computation, the execution terminates.

A usable platform must also allow to create new contracts at run-time. Since
in our model the LTS representing possible computations is fixed, we would
need a mechanism to “extend” it. To handle the publication of new contracts,
we could modify the protocol so that UR may contain its code, and the unique
identifier of the transaction also identifies the contract. In this extended model,
update request would also contain the identifier of the contract to be updated,
so that meta-nodes can execute the corresponding code.
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Abstract. In this paper, we present Velocity, a decentralized market
deployed on Ethereum for trading a custom type of derivative option. To
enable the smart contract to work, we also implement a price fetching
tool called PriceGeth. We present this as a case study, noting challenges
in development of the system that might be of independent interest to
whose working on smart contract implementations. We also apply recent
academic results on the security of the Solidity smart contract language
in validating our code’s security. Finally, we discuss more generally the
use of smart contracts in modelling financial derivatives.

1 Introductory Remarks

The introduction of Bitcoin [13] in 2009 led to a new frontier in decentralizing
technologies, both in finance and elsewhere. Of the many implementations, we
note a few: file systems like The InterPlanetary File System (IPFS) [2], dynamic
name servers like DNSChain [14] and MaidSafe, a fully distributed platform [10].
For our purposes, the most interesting technology is Ethereum [4][17] — a decen-
tralized general transaction ledger. Ethereum in simple words is a decentralized
computer that can run code, called smart contracts, which enforce the per-
formance of an agreed upon set of negotiated standards in an automated and
immutable way. Smart contracts can be designed to disintermediate traditional
trusted parties, replacing them with pre-defined logical parameters. The smart
contract concept is not new and was introduced by Szabo in 1997 [16], however
there has not been any real implementation of it until Bitcoin, and then in a
much more flexible and verbose fashion: Ethereum.

Under the umbrella of “fintech”, “blockchain”, and “distributed ledger tech-
nology”, many legacy entities in the financial world (investment banks, security
exchanges, clearinghouses, etc.) have expressed interest (through whitepapers
and commercial partnerships and consortiums) in decentralizing financial mar-
kets. Derivative markets are often cited as a potential target. From the other
end, papers on Ethereum and tutorials on Solidity (a high level programming
language for Ethereum) often use derivatives as an example application. So there
is a degree of consensus that derivatives running on Ethereum is an interesting
application to study, but we are not aware of any public projects to attempt
to build a derivative market in a serious way. This paper is a first step in that
direction.
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1.1 Scope & Contributions.

A simplification of a derivative is as follows: two parties enter an agreement where
the first stands to profit if a specified security (e.g., stock) appreciates in value
over a specified time-period and the second stands to profit if it falls. Since the
profitability of the agreement is derived directly from the price of the security, it
is called a derivative instrument. The exact operational details that realize this
property di↵ers between types of derivatives. The most common derivative is a
put/call option which gives the second party (called the buyer) the opportunity
(but not obligation) to buy/sell a security at a specified price (strike price)
at (American) or within (European) a specified time (expiration). The buyer
pays the first party (the seller) a flat fee (option price) when purchasing the
option. Derivatives are generally held to hedge risks in price movements or for
speculation.

In a decentralized derivative system, a buyer and seller can have fast and
automatic clearing and settlement (straight through processing) of the derivative
without trusting a third party. However the design of a market must consider
the following challenges:

1. Terms of the Contract. The terms of derivative must be expressible in
the smart contract language. In this paper, we write contracts in Solidity for
the Ethereum blockchain which is su�cient for describing the core aspects
of the contract. We present a full implementation stack (from the smart
contracts to a UI) for buying/selling a special type of derivative instrument.
We pay special attention to common security risks in developing Solidity-
based contracts.

2. Counterparty Risk. In most derivatives, the seller is obliged to buy/sell
securities upon request of the buyer subject to the terms of the derivative.
A seller might choose to not follow through with her obligations. In a cen-
tralized setting, identity, reputation and legal recourse are used to combat
this. In a decentralized environment, this problem must be addressed. In this
paper (and the reason we position it as a first step), we start with derivatives
that are fully collateralized — meaning the full settlement amount under all
outcomes is capped and this amount is locked to the contract at initiation
time and distributed under the conditions of the contract. This means we do
not implement a traditional put/call option but rather a tweaked version we
describe below. In future work, we will consider counterparty risk broadly
and how mitigating it can be combined with our framework to o↵er more
traditional derivatives.

3. Price Feed. In a derivative where settlement is fully automated, either the
underlying security (or a token representing it) needs to be on the blockchain
already or the blockchain needs to be able to assign a value to the security—
or more precisely, be fed the price it should use in evaluating the code of the
contract. In practice, an entity feeding prices (or any external information)
into a smart contract is called an oracle. Some related work has examined
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oracles, and we present our decentralized design in Section subsection 4.2
called PriceGeth, which we have made freely available.1

4. Underlying Financial Model. The buyer and seller of a derivative, whether
implicitly or explicitly, must have some sense of what the probabilistic be-
haviour of the underlying security must be to determine the terms of the
contract. This is the purpose of the infamous Nobel-awarded Black-Scholes
model for stock prices — now obsolete but influential for decades. In our sys-
tem, such a model is not baked into the functioning of the smart contract but
would be used externally to decide favourable terms before buying/selling
derivatives. For stocks, modern models (like jump-di↵usion) might be used.
For derivatives on cryptocurrencies or more esoteric securities, models sim-
ply do not exist yet and are an open area of research. Finally, we note that
the derivative ultimately settles in Ether and so inflations/deflation of the
currency might erode an otherwise profitable derivative.

In summary, we limit our contributions to (1) and (3) in this work, but also
propose this fuller landscape as a useful research agenda for future researchers.

2 Related Work

Work on trusted oracles and price feeds, in the Ethereum eco-system, include
TownCrier [18] which acts as an attested bridge (running within an SGX enclave)
between trusted sources of information and the Ethereum blockchain. Oraclizeit2

is another price feed which uses the similar workflow to fetch the requested
information. Our approach di↵ers from these as PriceGeth publishes the data
to the Ethereum blockchain from the trusted source of information and the
historical data is available to all smart contracts, however in comparison with
the other approaches, is limited to only the published data (Price pairs).

Equibit [11] proposes a method to issue, create, disseminate and maintain
equity across a broad base of investors without the need of intermediaries for
record keeping. It is conceivable that derivative smart-contracts could utilize
Equibit equity as payment or settlement method, as opposed to simply using
Bitcoin or Ethereum’s native digital currencies.

Bentov et al. [3] note than an extension to their work on decentralized pre-
diction markets can be a derivative instruments they call a capped contracts for
di↵erence. It is similar to the one implemented in Velocity (their paper is not an
implementation but a study of game theoretic properties).

Recent attacks on smart-contracts, such as TheDAO attack [9] attracted
security researchers to analyze further on this era. Solidity security and survey
of the attacks by Atzei et al. [1] lists some of the known security vulnerabilities
and Luu et al. developed a tool for static analysis on smart contract codes [12]
which we used.

1 https://github.com/VelocityMarket/pricegeth
2 http://www.oraclize.it/

https://github.com/VelocityMarket/pricegeth
http://www.oraclize.it/
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Fig. 1: Our collar-esque option with maximum long payout scenario.
K1 is the initial price, K2 is the price at expiry time and R is the
pre-defined collar for payouts

3 Materials and Methods

Smart Contracts. A contract is a written or spoken agreement between two or
more parties that is intended to be enforceable by law. In a smart contract,
terms are written in code and executed by machines, removing the human per-
formance component (unless if such a component is specified). We can consider
our main smart contract as a black box: the inputs are investors’ deposited ether
(Ethereum’s cash) and their position on the future price of an asset, either short
or long. The smart contract will retain the deposit in escrow and execute a pay-
out calculation and the payout itself when the expiry date comes. The payout
is in Ether only, no actual shares are exchanged (a contract for di↵erence) and
the maximum payout is capped (limit up/down). Due to the deposit, there is no
counter-party risk however the contract requires a trustworthy price feed and the
investors earn zero interest for the duration of the contract. For this reason, we
consider this a first step toward more flexible arrangements. The contract dis-
intermediates the trusted role of the exchange (or broker for over-the-counter)
and settling/clearing entities.

Types of Options. We implement a non-standard option that is similar to a col-
lar or hedge wrapper. It is non-standard due to our requirement of escrowing
money, which we make to side-step counter-party risk and enable a fully au-
tonomous and disintermediated contract. The contract collects funds from the
hedgers/speculators who take opposing positions on the future prospects of an
asset: one takes the short position when they believe the underlying asset’s value
will lose value from its current price, and other takes the opposite long position
speculating a rise in the price. In its simplest form, the collar options pay out $1
for every $1 change in the underlying asset (the payout can be made dependent
on a drift term or even made non-linear). The payout is limited by the amount
of money held in escrow—if the price rises beyond the limit, it is said to be
limit up (or limit down in the opposite case) and the payout will be fixed (see
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Figure 1). This kind of payout capping helps the contract holders stay immune
to systemic risks and extreme jumps.

Development and Deployment. There are a few blockchains that would let us
code an autonomous smart contracts: Ethereum, RSK [8] and more. The decision
to work on Ethereum blockchain rather than others solely came from the fact
that there are more active developers in the community and maturity of the
platform. Even though Ethereum is in early stages, it is more mature than other
smart contract compatible platforms. The programming language used for smart
contract development is Solidity in most of these platforms. All smart contracts
developed and used in this paper has been deployed and tested by our beta testers
on Ethereum testnet. In Ethereum blockchain, transactions and processing power
costs some small amount of ether called gas3. For each transaction, the sender
defines the gasLimit and also gasPrice for processing that transaction and miners
decide to include those transactions in the blocks they mine or not. The concept
of gas has many angles to discuss which falls outside of the scope of this paper.
We will discuss some more in section 5.

4 Implementation

We call our platform Velocity. We tried to model the real-life scenario of buying
an options derivatives. Consider the case where Alice goes to a broker and buys
an options contract from Bob. The broker is the one that handles the money
transfer and also execute the options contract at the contract expiry time. Now
our goal is to replace the broker with a smart contract. For the purpose of a proof
of concept, the smart contract will also act as Bob, meaning if Alice buys a
short call option, the Velocity smart contract will put a long call against her short
call. This can be generalized so that other entities can fund the contract but for
the rest of this paper, Velocity acts as a market maker. This might lead to users
gaming the system, however it’s trivial to change the smart contract to wait for
the other opponent to enter the contract. We discuss this more in section 5.

4.1 Velocity Main Smart Contract

A Velocity smart contract can be used for speculation on the price of any two
assets4, although the Ethereum price is always exposed as the deposits and
the withdrawals are done in ETH5. As for this experiment, we use the price
pair of Bitcoin (XBT/BTC) and Ethereum (ETH). If we used price pairs not
involving ETH, for example the CAD/USD exchange rate, it would su�ce to use
two contracts for CAD/ETH and ETH/USD. Or the payout function could be
changed to specify how it relates to numbers it is given. Note that in either case,

3 What is gas? http://ethdocs.org/en/latest/contracts-and-transactions/
account-types-gas-and-transactions.html#what-is-gas

4 or any other events that an options contract can be based on
5 Ethereum symbol

http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas
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the payout will always be in ETH. In its full generality, any number that changes
over time and has a suitable feed (we describe feeds below) can be used: price
(stocks, bonds, commodities, etc.), rate (interest, inflation, population, etc.), or
something else (average global temperature, number of days without rain, etc).

Smart contract. The way Velocity smart contract is implemented, one party
purchases a contract by sending a nominal amount of ethereum (0.1 ETH) to
the contract’s ethereum address. Once confirmed by the network, the contract
will fetch a starting price from the price feed, PriceGeth, and run for a period of
time to reach the expiry time. The smart contract would put the same amount
of ETH from its pool of funds into escrow for the payout. In the PoC demo,
we use 5 ethereum blocks (approximately 1 minute) to settle a contract. When
the expiry time reaches, the same party must send another transaction to the
contract and call the settlement function to settle the contract which leads to
sending the payouts by the smart contract. While this experiment was going
under beta testings, we found out that if the user loses the contract, there is
no incentive to call the settle function as it would use up some ETH in gas and
would not pay the user. This would lead stale money held in the escrow of the
smart contract. This made us redesign our settlement functions and write one
centralized cron job script to go through the unsettled contracts once a day and
call the settle function on the ones that have been expired.

1 modifier checkMargin(uint amount) {

2 if (amount == (applyLOT(Margin)))

3 { _ ;} else {

4 Error("Invalid Margin!");

5 immediateRefund();}

6 }

7 function goLong() public hasEnoughFunds(msg.value) checkMargin(msg.value)

payable returns(uint) {,!

8 lastOptionId = newOption(msg.sender, msg.value, true);

9 LongOption(lastOptionId, msg.sender, msg.value, block.number);

10 return lastOptionId;

11 }

Code 1: Velocity Main Smart Contract - Long Option Call, The sender
of a transaction to goLong() function has to send exactly the Margin
value and with that he enters the option contract for Margin value
with the smart Contract

Settle function. exercise() is responsible in settling the options contract and
pay out both parties (see 2), in which here is the user and the Velocity smart
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contract. Most of the functions are responsible to find the appropriate option
contract and calculate the pay outs. However there are some functions that were
added later on for security measurements, such as isOpen modifier. Modifiers in
Solidity are functions that can check some statements before executing the main
function. The first deployed version of Velocity main contract was vulnerable
to a similar (but not the same) attack as the DAO attack, see section 5. It
was possible for an attacker to call an option contract and upon settling and
winning, keep calling the exercise() function using his OptionId and get more
of the same amount of payout over and over again. The code was patched and
a new smart contract was deployed later in the experiment6. send() is a built-
in function in Solidity which handles the sending of funds to other ethereum
addresses or contracts. There are known vulnerabilities on how send() function
works in solidity which should be appropriately handled. One can use a smart
contract address as his option payout address which would execute some code
upon receiving any funds and use that code flow to drain the sender’s contract.
payAndHandle() function tried to use the best security practices to prevent such
attacks (see 5 for the source code).

1 modifier isOpen(uint optionId) {if (AllOptions[optionId].closed) throw;

_ ;},!

2 function exercise() public {

3 exercise(findOptionId(msg.sender));

4 }

5 function exercise(uint optionId) public isOpen(optionId) returns(bool)

{,!

6 // REMOVED SOME CODE TO SAVE SPACE, FULL SOURCE CODE IS AVAILABLE ON

VELOCITY GITHUB REPOSITORY,!

7 AllOptions[optionId].closed = true; //Doing this before payouts to

prevent replay attacks on same instance of the contract,!

8 LockedBalance -= AllOptions[optionId].amount; //release locked amount

from escrow,!

9 // Payout calculation

10 if (pricesToCheck.pricediff >= (int(Margin))) { // diff >= (margin)

-> Pay Long,!

11 //pay long

12 return payAndHandle(optionId, AllOptions[optionId].Long, 2 *

AllOptions[optionId].amount);,!

13 }

14 if ((0 < pricesToCheck.pricediff) && (pricesToCheck.pricediff <

(int(Margin)))) { // 0 < diff < margin,!

6 Fix for the multiple payout bug: https://github.com/VelocityMarket/Options-
Contract/commit/f3c8d0ef66b886c9ee8b432e92c83f3a4fb525ba

https://github.com/VelocityMarket/Options-Contract/commit/f3c8d0ef66b886c9ee8b432e92c83f3a4fb525ba
https://github.com/VelocityMarket/Options-Contract/commit/f3c8d0ef66b886c9ee8b432e92c83f3a4fb525ba
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15 return (payAndHandle(optionId, AllOptions[optionId].Long,

(AllOptions[optionId].amount + pricesToCheck.priceDiffLOT)) &&

payAndHandle(optionId, AllOptions[optionId].Short,

(AllOptions[optionId].amount - pricesToCheck.priceDiffLOT)));

,!

,!

,!

16 }

17 }

Code 2: Settle function of main options contract

Source Code API documentation for other smart contracts to use the func-
tionality and also Python and NodeJS clients to communicate with the main
smart contract are available on Github7.

4.2 Price feed

A decentralized Price feed is an essential requirement for having a decentralized
derivative market. There are a few proposals on how to fetch the price in a smart
contract. One is using Smart Contract oracles8, they o↵er daily updates for the
price using a predefined data source. This was not an option to be used for our
purpose as a daily update is not su�cient for short term derivative markets.
Another option that could be used was Oraclizeit. They way Oraclizeit works
is that the client smart contract, Velocity main contract in our case, sends a
transaction to Oraclizeit smart contract with the required API url and the fields it
needs, sometime after the confirmation by the network, Oraclizeit smart contract
sends a callback transaction to Velocity smart contract with the requested data
(Figure 2).

For the first implementation of Velocity smart contract we used Oraclizeit
method to fetch the price.

As mentioned before, most of the decentralized application infrastructure on
Ethereum blockchain are in Beta state and might not work as intended. This
applies for Oraclizeit, specially as by design they have a central server which
can stop working without any notice or visible signs. The red boxes in Figure 2
indicates the centralized parts of the system. As you can see in 3, Oraclizeit will
send the price to the callback function at the time of the call and also execute
the exercise() function which is responsible for saving the price and calculating
the payout amounts. This makes the callback function one of the important
functions which should be called at the specific time.

1 //initiating oraclize it

2 oraclize_setProof(proofType_TLSNotary | proofStorage_IPFS);

7 Simple collared option smart contract: https://github.com/VelocityMarket/
Options-Contract

8 Data and Payments for your Smart Contracts https://smartcontract.com/

https://github.com/VelocityMarket/Options-Contract
https://github.com/VelocityMarket/Options-Contract
https://smartcontract.com/
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Fig. 2: Oraclizeit work flow

3 //oraclize_setNetwork(2); //

4 priceUrl = "json(https://www.bitstamp.net/api/v2/ticker/btcusd).last";

5 function updateBTCUSDFromFeed(uint delay){

6 oraclize_query(delay, "URL",

7 priceUrl, 400000);

8 }

9 function __callback(bytes32 myid, string result, bytes proof) {

10 if (msg.sender != oraclize_cbAddress()) throw;

11 uint BTCUSDFeed;

12 BTCUSDFeed = parseInt(result, 2);

13 exercise() // this function exercises the contract to calculate the

payouts,!

14 }

Code 3: Implementation of Oraclizeit price feed in Velocity smart
contract

In our testing period, we encountered multiple problems with this design:

1. The callback would not happen at all, which would result in an unsettled
options contract. Oraclizeit support team were helpful and fixed this issue
later on.

2. The callback would happen with some delays, which would result in in-
consistency in the fetched price with the the options contract expiry date.
decentralized networks have some latency by design, realtime does not really
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Fig. 3: PriceGeth Work Flow

mean anything in such networks, hence counting on a transaction to happen
at a exact time is not the best solution.

3. The callback would happen with insu�cient gas, which would result in the
failure to properly run exercise() function and thus failiure to settle the
options contract. Oraclizeit library o↵ers a way to send more gas than needed
in case the callback function needs more gas, however on the time of this
experiment that functionality was not working properly.

PriceGeth We designed PriceGeth9 to publish (almost) realtime price pairs to
Ethereum blockchain. This is how PriceGeth works (also see Figure 3):

1. PriceFetcher server is saving an exchange Prices (USDBTC, BTCETH, BTCETC,
BTCDOGE) every 1 second in a database

2. BlockListener is listening on using Geth10 for new blocks
3. When BlockListener sees a new block it fetches the price at the Blocktime

from PriceFetcher Module
4. PriceGeth server sends the data to PriceGeth smart contract( 4) and updates

the latest price

PriceGeth smart contract would keep all the historical prices and all would be
available to all smart contracts on Ethereum blockchain for free (no gas needed
to fetch the price). The reason this is almost realtime, goes back to the nature of
blockchains. Time units as in seconds and minutes are not meaningful for most
of the blockchain applications, but the block height can be used as the time

9 Price API for Smart-Contracts on Ethereum Blockchain https://github.com/
VelocityMarket/pricegeth

10 O�cial Go implementation of the Ethereum protocol https://geth.ethereum.org

https://github.com/VelocityMarket/pricegeth
https://github.com/VelocityMarket/pricegeth
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unit, meaning the time of each block is known to all users of the blockchain,
but before a block is published no other time units can be used. This is why
we designed PriceFetcher module to connect to an exchange API and saves the
price pairs every second, to have the price for the previous block time anytime
a new Ethereum block is generated.

1 struct Feed {

2 uint USDBTC;

3 uint40 BTCETH;

4 uint40 BTCETC;

5 uint40 BTCDOGE;

6 uint40 timestamp;

7 uint blockNumber;

8 }

9 mapping (uint => Feed) priceHistory;

10 function setPrice(uint40 timestamp, uint40 blocknumber, uint USDBTC,

uint40 BTCETH, uint40 BTCETC, uint40 BTCDOGE) ifOwner() {,!

11 if (firstBlock == 0) firstBlock = blocknumber;

12 priceHistory[lastBlock].timestamp = timestamp;

13 priceHistory[lastBlock].blockNumber = blocknumber;

14 priceHistory[lastBlock].USDBTC = USDBTC;

15 priceHistory[lastBlock].BTCETH = BTCETH;

16 priceHistory[lastBlock].BTCETC = BTCETC;

17 priceHistory[lastBlock].BTCDOGE = BTCDOGE;

18 PriceUpdated(timestamp, blocknumber, USDBTC, BTCETH, BTCETC, BTCDOGE);

19 }

Code 4: Pricegeth Main Smart contract
PriceGeth is a proof of concept implementation of having a trusted entity

publishing price pairs to the blockchain and we are aware of the implications of
trusting the PriceFetcher not to manipulate the prices. PriceFetcher is the central
point of failure in PriceGeth design and should be addressed in future work.
However after further research, it is almost impossible to have a truly trustless
decentralized price feed unless we have a decentralized exchange infrastructure
on the blockchain. This exchange can be used as the price oracle as the order
books would be stored on the blockchain and hence there is no one single point
of trust. The red boxes in Figure 3 are indicating the centralized parts of this
implementation. PriceGeth is released as a stand alone smart contract and also a
library to be used in other smart contracts to use the price feed free of charge11.
Another challenge of PriceGeth design is that PricePublisher is paying the gas

11 PriceGeth Library https://github.com/VelocityMarket/pricegeth

https://github.com/VelocityMarket/pricegeth
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for publishing and storing all the price pairs, and as there is no incentive of
doing so, it is not an ine�cient way of o↵ering price oracles. PriceGeth can be
implemented in a way that clients should use a token issued to them beforehand
to fetch the price, or require payments to release the price data.

By design PriceGeth operator should not be able to use Velocity options as
he can manipulate the price to game the system.

There is a similar work on price feeds titled Town Crier [18], which uses TLS
security to prove the fact that the data sent to the smart contract is exactly
as the one provided by the API, conceptually similar to Oraclizeit TLSNotary-
proof12. TownCrier uses Intel SGX in their central server which insures the
integrity of hardware used and thus insures no manipulation is done on the
server. Even though one can argue that the data provider is a trusted entity, one
of the goals to have a decentralized application is to have no trusted entity in
the infrastructure and to have a trustless system.

5 Discussion

Security Smart contracts have introduced some new security concerns to de-
velopers. Notions like gas usage and consensus and most importantly a function
that pays out irreversible money are new to most of the developers hence the
ability to develop a secure smart contract is hard to grasp. One of the visible ex-
amples of security issues is the attack on The DAO, Decentralized Autonomous
Organization13. The goal of the DAO was to remove all the need for any venture
capital intervention or any other third party for fundraising on a new idea or a
company through crowdfunding and giving the investors tokens (shares) of the
company. However due to an issue splitDAO function which was responsible to
manage and fund new child DAOs or projects, an attacker was able to take one
third of the money in the original DAO, worth approximately 86 million USD [7]
at the time of the attack, this vulnerability is dubbed Reentrancy Vulnerability.

Luu et al. [12] developed a symbolic execution tool called “Oyente” to find
potential security bugs, which they proved e↵ective by running on Ethereum
blockchain and successfully identifying The DAO vulnerability. We used this
tool to analyze our code (see Figure 4).

Another family of vulnerabilities that have caused some of the known attacks
are Mishandled Exceptions, which mostly has caused Denial of Service attacks on
individual smart contracts. In Velocity main contract we used modifier functions
to sanitize the inputs to narrow down the probability of such exceptions. Another
set of attacks Timestamp Dependence and Transaction-Ordering Dependence are
interesting to ponder, however due to the design of Velocity and PriceGeth, they
are not applicable to these smart contracts. As an example, usage of timestamp
was replaced by Ethereum blocknumber and smart contracts time is based on the
block number rather than seconds and minutes. There has been more security
bugs in solidity compiler, a few related bugs were explained in 4.1.

12 https://docs.oraclize.it/#security-tlsnotary-proof
13 https://github.com/slockit/DAO

https://docs.oraclize.it/#security-tlsnotary-proof
https://github.com/slockit/DAO
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Fig. 4: Results of Smart Contract analysis tool called Oyente [12] to
find security bugs

1 function payAndHandle(uint optionId, address addr, uint amount)
private returns (bool success) {,!

2 if (addr.send(amount)) {
3 optionPaid(optionId, addr, amount); //event for successful

payment,!

4 } else { throw;}
5 return true;
6 }

Code 5: Secure payouts in smart contracts

Gas Sustainability The concept of gas usage for processing power is not easy
to grasp even for long term developers. People might be familiar with limited
computational or storage resources, but the concept of passing gasLimit to a
function to use to process inputs is a new concept. Each step has its own esti-
mated gas usage, as an example to store a value in a variable, you have to pay
100 Wei14 for each sstore call15. This should be considered that there’s a cap for
gas usage for each transaction and block, thus complex computation should be
split into multiple transactions which makes smart contract design more compli-
cated than they are. Also we should mention that function calls can fail due to
the fact that they run out of gas and they don’t have enough gas to finish their
required computation or storage. This can cause unpredicted behaviour from the
smart contract as there would be broken flows in the code which should have
been handled by the developer. The gas usage could change as there are updates
and security patches to Ethereum protocol, e.g transaction spam attack16. It

14 Wei: Smallest unit of Ethereum, equevalent to 0.000000000000000001 ETH
15 put into permanent storage
16 Long-term gas cost changes for IO-heavy operations to mitigate transaction spam

attacks https://github.com/ethereum/EIPs/issues/150

https://github.com/ethereum/EIPs/issues/150
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might take multiple implementation of the same function to find an equilibrium
between readability and gas e�ciency.

Misuse of the contract In the current implementation of Velocity smart con-
tract, one can call the Long option when he is sure of the price increase between
the start time and expiry time and keep on doing this until there is no money
left in the smart contract’s pool of funds. This is because the smart contract
calls the opposite of the incoming option call blindly. However in future work,
there should be market scoring rule which depends on how many short option
calls are placed comparing to the long calls and make it more expensive to call
short when there are more short option calls than long calls.

Collar Option library Velocity smart contract can be used as a module in
any other smart contract to handle option calls and execute some functions on
the expiry time. This smart contract was written as a proof of concept and was
released under GPL license17.

6 Future work

As discussed in subsection 4.2, fully decentralized Price feeds and oracles are
needed in order to have a trustless decentralized financial market. This can be
done by having a decentralized exchange to extract prices from using smart
contracts. Even though there has been many price feed methods discussed, none
of them seem to have trustless infrastructure. Smart contracts security is not well
practiced and there are many unknown attack vectors in the eco system, from
solidity compiler security bugs [15] to best practice security implementations [6],
there is work to be done and tests to have a more mature secure eco-system to
work with, Specially if the end goal is to have a decentralized financial application
in place where money is at stake.

As for the options contracts, there should be more research and work on the
payouts to make them smarter. One proposed solution is to have market scoring
rules in place, which means if there are more open short option calls than long
calls, it should get more expensive to call short options and vice-versa. Smart
contracts are unchangeable piece of code that run autonomously, meaning if
there’s a market crash or systematic error, there cannot be anything to do to
suspend the payouts and shut down the application, unless with pre-defined
functions in the smart contract which only the owner can trigger, which would
be a double standard in the trustless eco-system.

7 Conclusion

Even though the idea of having a fully autonomous and decentralized derivative
market is intriguing, the infrastructure to reach this goal is still missing from the

17 https://github.com/VelocityMarket/Options-Contract

https://github.com/VelocityMarket/Options-Contract
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underlying network. As for example, price feed is one of the essentials of such a
market and it should be done in a fully decentralized trustless way to prevent
fraud and market manipulation by the feed provider. All the existing solutions
today, have a central point that can manipulate data, it is either the exchange
API or the component responsible to publish the price. As discussed before, one
of the only solutions to this problem is to have a fully decentralized exchange on
the network to provide realtime price feed for other smart contracts. There are
some work done on decentralized exchanges [5], although there is no real world
deployment of such a system at the time of writing. Smart contracts are fasci-
nating idea that can revolutionize the technology by removing the middlemen,
however the underlying technology is more on the proof of concept level than
mature enough to be used on the real world scenarios. We should also mention
that the barrier for people to have the relevant crypto-currency to work with
such systems still exists.
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A Demo Website (UI) for the Velocity smart contract

Fig. 5: Velocity Options Smart Contract Demo
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Abstract
Motivated by the desire for high-throughput public databases (i.e., “blockchains”),

we design incentive compatible protocols that run “o�-chain”, but rely on an existing
cryptocurrency to implement a reward and/or punishment mechanism. Our protocols
are incentive compatible in the sense that behaving honestly is a weak Nash equilibrium,
even in spite of potentially malicious behavior from a small fraction of the participants
(i.e., the BAR model from Clement et al. [8]). To show the feasibility of our approach,
we build a prototype implementation, called SmartCast, comprising an Ethereum smart
contract, and an o�-chain consensus protocol based on Dolev-Strong [11]. SmartCast
also includes a “marketplace” smart contract that randomly assigns workers to protocol
instances. We evaluate the communication costs of our system, as well as the “gas”
transaction costs that are involved in running the Ethereum smart contract.

Keywords— atomic broadcast, TRB, game theory, Ethereum, smart contracts

1 Introduction

Bitcoin and related cryptocurrencies have sparked renewed interest in decentralized con-
sensus protocols, as exemplified by the so-called blockchain technologies. It turns out that
many applications (including complementary currencies, certificate revocation [15, 7], direc-
tory authorities for p2p networks like Tor [10]), benefit from a globally agreed-upon sequence
of transactions. Currencies such as Bitcoin and Ethereum use the proof-of-work mining to
distribute the responsibility for maintaining the blockchain integrity to a large collection
of parties; the integration of mining with a financial reward makes this collection di�cult
to subvert. However, the global nature of this ledger creates some inherent costs, both in
terms of transaction costs and the agreement latency. An alternative approach is what has
been termed a permissioned ledger, where the role of miners is taken by a trusted coalition
of parties, whose motivation to properly follow the protocol is assumed to come externally.

Several applications of blockchains, however, would benefit from a middle ground be-
tween these two extremes. Loosely defined coalitions, such as food banks, cooperatives, or
student organizations, are some times in need of a blockchain-like ledger for tracking mem-
bership benefits or exchanges between sister organizations; however, they would not have
the resources to directly operate a reliable collection of “miners,” nor, necessarily agree on a
set of trusted parties. At the same time, directly using cryptocurrency for account deposits
might limit their accounting flexibility and incur non-trivial transaction costs.

Our approach creates a system where workers who act to enforce integrity are financially
rewarded for their correct participation in the process, as monitored by other workers and
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enforced through an Ethereum smart contract. Our protocol draws inspiration from a
consensus protocol designed by Clement et al. [8], where honest participation is shown to
be a rational strategy for participants trying to maximize their utility. Their protocol,
however, assumes that workers derive intrinsic utility from the correct functioning of the
protocol and requires an infinite time horizon; in our scenario, which we believe to be more
realistic, we expect consensus to be enforced by inherently disinterested parties whose only
motivation is financial. This extrinsic reward dramatically simplifies the protocol design
and improves its e�ciency. Our protocol requires only occasional communication with the
Ethereum blockchain through the smart contract, thus minimizing transaction costs.

To design our protocol, we create a generic transform that renders any existing protocol
where communication is the dominant cost incentive-compatible. We show that, under this
transform, honest participation is a weak Nash equilibrium in a worst-case utility model,
which was previously used by Clement et al. [8].

To show the feasiblity of our approach, we build a prototype implementation, called
SmartCast, comprising an Ethereum smart contract and an “o�-chain” consensus protocol
(based on the Dolev-Strong [11] broadcast protocol). . We evaluate the communication
costs of our system, as well as the “gas” transaction costs that are involved in running the
Ethereum smart contract. We additionally describe how these protocols can be deployed in
practice with random consensus nodes.

1.1 Related Works

Several previous works have proposed using cryptocurrencies to enforce properties in o�-
chain protocols. Bentov and Kumaresan’s protocol [1] guarantees either a fair output or
else financial compensation to each honest party, but requires significant collateral deposits.
In contrast, our weak Nash equilbirium notion guarantees that parties cannot benefit by
deviating. In a separate line of work, Garay et al. design a general framework to build
protocols that are resilient against rational adversaries [12]. We instead design a protocol
transformer that can achieve resilience for a certain class of protocols. To the best of our
knowledge, we are the first to harness smart contracts for the purpose of Byzantine fault
tolerance.

2 Background and Preliminaries

2.1 Network Model

Our basic computation model is the standard point-to-point network setting with syn-
chronous authenticated channels. We consider a fixed set of parties N , where an indi-
vidual party is denoted p œ N . The protocol proceeds in rounds of communication, with
the exact order of messages in each round may be arbitrary (i.e., chosen by the adver-
sary). Messages not delivered within the round are invalid. Each party is associated with a
common-knowledge public signing key to send authenticated messages. Our model accounts
for Byzantine failures. The adversary can choose to corrupt a subset of nodes B µ N , giving
them complete control over these nodes. |B| is bounded by a parameter b.
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2.2 Smart Contract Protocols

Public cryptocurrencies [5] (or “blockchain”) systems, such as Bitcoin [18] and Ethereum [21],
provide a decentralized platform for programmable money. These can be used as general-
purpose trusted third parties, but with caveats. For instance, they can be trusted for
correctness, but do not provide any inherent privacy. For some applications, privacy can be
provided by a layer of multi-party computations and zero-knowledge proofs [13, 2]. A sec-
ond caveat is that blockchain transactions are expensive (because they are fully replicated
throughout the entire cryptocurrency network), so it typically is not cost-e�ective to carry
out protocols directly on top of the blockchain.

A protocol in the smart contract model is therefore most e�ective with two components:
1) A smart contract program, which receives reports from nodes about each other, and
dispenses rewards at the end; and 2) Local code for each of the parties to execute, including
interactions with the smart contract and participation in “o�-chain” subprotocols. We also
assume a rushing adversary, who can observe the smart contract transactions sent by non-
Byzantine parties before submitting transactions on behalf of the Byzantine parties.

2.3 Utilities in the BAR Model.

We adapt the The Byzantine-Altruistic-Rational (BAR) fault tolerance model from Clement
et al. [8] to the smart contract setting. The BAR model is a game-theoretic layer on top of
the standard distributed protocol execution model. That is, we view the choice of what code
to run (i.e., either following the protocol or deviating in some arbitrary way) as a strategic
decision.

We associate each “o�-chain” protocol message with a cost to the sender of that message,
determined by the total size of the messages sent. However, we ignore any other costs of
computation, storage, and other resources. We thus assume that the total utility of each
party therefore depends on the monetary payments disbursed by the smart contract, minus
the cost of the messages they send. Since the protocol execution is probabilistic, unless
indicated otherwise we are concerned with the expected utility.

As Clement identifies, in an ordinary protocol (i.e., without the smart contract incentive
mechanism in place), parties may be able to profit by deviating from the protocol — in
particular by withholding messages to reduce their costs (i.e., by acting “lazy”). Thus the
high level approach is to punish lazy nodes.

A strategy profile ‡̨ defines a program for each party p in N to run. Given a protocol
fl, we use the symbol fl̨ to denote the prescribed strategy, in which every party follows the
protocol correctly.

While standard distributed systems models feature a worst-case adversary, and standard
game models feature a set of strategic (i.e., “rational”) players, the intersection of these has
yet to be studied widely. Clement proposes the following notion of “worst-case utility,”
which we also adopt.

Definition 1. Worst-case Utility. The worst case utility ūp(‡) for a rational player p œ N is
where p follows strategy ‡, every non-Byzantine player in N ≠B ≠{p} follows the prescribed
strategy, fl̨N≠B, and the choice of Byzantine players B and their strategies ·̄B œ SB are
chosen to minimize the resulting utility up. This is defined more precisely as:

ūp(‡) , min
BµN :|B|Æb

¶ min
·̨œSB

¶ up(fl̨N ≠B≠{p} + ‡ + ·̨B) (1)
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Our goal is then to show that the prescribed strategy is a worst-case weak Nash equilib-
rium, i.e., ūp(flp) Ø ūp(‡) for any ‡. That is, a rational party cannot improve their expected
utility by following any other deviant protocol ‡. This solution concept could be thought of
as modeling paranoid players who think that other parties (up to b of them colluding) are
“out to get them.”

2.4 Synchronous Byzantine Agreement

Alternative definitions of consensus primitives abound in the distributed systems literature.
Perhaps the strongest of these — and the one most naturally suited to our application
scenario — is “atomic broadcast.” This primitive allows any of the N protocols parties to
submit input values, and the parties all reach agreement on an ordered sequence of values
that at least includes the inputs from each honest party. Atomic broadcast could thus be
described as the “blockchain” primitive in today’s post-Bitcoin parlance.

Below we provide a more formal definition of this primitive, adapted for the synchronous
setting. We assume that each input value is bounded by a maximum message size C, and
that the protocol finally terminates after a maximum number of rounds r†.

Definition 2. Bounded Atomic Broadcast: Given a set of players N , each process p in N
receives inputs mp,r œ {0, 1}C in round r.

• (Termination): after a bounded number of rounds r†, each correct process terminates.
• (Agreement): The sequence of outputs Vp,r in round r by each correct process p are all

identical, i.e. ’r, ’p, q œ N ≠ B.Vp,r = Vq,r.
• (Validity): every input from a correct node (received before r Æ r†) is included in Vr† .

Looking ahead, in Section 3.4 we implement an atomic broadcast protocol by composing
a simpler primitive, called Terminating Reliable Broadcast (TRB). In TRB, one of the
parties is designated as the leader, and only the leader may input messages. Thus in TRB
there is no need to apply an ordering to messages from di�erent sources, and if the leader
is faulty then the parties may need to output a default value ‹.

Definition 3. Terminating Reliable Broadcast Given a set of players N , among which one,
D, is designated the leader and receives an input m œ {0, 1}C (i.e., within some bounded
message size of C bits), a Terminating Reliable Broadcast protocol must satisfy the following
properties:

• (Termination): Every correct process p delivers some value m œ {0, 1}C fi {‹} after a
bounded time rú.

• (Agreement): If any correct process delivers m, then all correct processes deliver m.
• (Validity): If the leader D is correct, then every correct process delivers D’s input m.

Alternative network models. Although our SmartCast protocol relies on a synchronous
network model. This is generally considered a strong assumption. Other protocols such as
PBFT [6] provide security in the more challenging weakly synchronous setting — they meet
the lower bound in this model, which is b Æ N/3. However, synchrony is an assumption
we must take anyway if we rely on a smart contract system in the style of Bitcoin and
Ethereum. It is not clear how to adapt our protocol to the asynchronous setting, since we
would not be able to detect whether a message was omitted by a party or just delayed in
the network.
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3 Smart Contracts for Incentive Compatible Protocols

In this section we present our main contribution, a protocol transformer, SmartBAR(·),
which transforms an arbitrary synchronous protocol with costly communication, fi into an
incentive compatible protocol SmartBAR(fi). As an application, in Section 3.4 we apply this
transformation to yield an incentive-compatible consensus protocol, called SmartCast.

At a high level, SmartBAR(·) adds a smart contract layer to fi that implements a re-
ward/punishment mechanism. In an ordinary protocol (i.e., without this incentive mecha-
nism in place), parties may be able to profit by deviating from the protocol — in particular
by withholding messages to reduce their costs (i.e., by acting “lazy”). To ensure that lazi-
ness is not profitable, our protocol enlists the honest parties to detect lazy nodes and the
smart contract to punish them.

The transformation works for an arbitrary synchronous protocol fi that satisfy the fol-
lowing assumptions. First, each correct party in fi terminates after a bounded number of
rounds rú, for some parameter rú. Second, the total number of bits between any pair of
parties is bounded by a value M . We call a protocol that satisfies these an (rú, M)≠bounded
synchronous protocol.

Since the transformation runs fi in place, any fault tolerance properties of fi still carry
over to SmartBAR(fi). In particular, if fi tolerates b faults, and we prove that running is
a b-worst-case equilibrium, then the security of the overall protocol security reduces to the
assumption of strategic behavior among the rational remaining parties.

3.1 The Protocol Transformer SmartBAR(·)
The transformed protocol SmartBAR(fi) runs fi with the following minimal modifications:

• Modification 1: We impose a predictable communication pattern so that nodes can detect
if another is cutting costs by not forwarding messages. Our predictable communication
pattern requires that in each protocol instance, node p must send every node q the
maximum possible total message size M . If fewer than M message bits are sent by the
end of the protocol, then dummy messages are sent to make up the di�erence.

• Modification 2: We impose a penalty on nodes that fail to forward messages, by imple-
menting the following rules:

– Each node keeps track of the total message bits received from each other node.
– At the end of the protocol, if fewer than M bits have been received by p from q, then p

sends a report Rp,q = enemy to the smart contract. Otherwise, if at least M bits have
been received, then p sends a report Rp,q = friend.

– The smart contract waits until the final round of the protocol rú to collect status reports
from all nodes p œ N . Finally, the smart contract determines the payout to each party
by deducting a penalty of ◊ (a parameter discussed shortly) for each enemy report about
that party.

Alternative definitions of enemy Note that we propose a relatively lenient definition
for enemy as a node that does not send at least M bits. This protects honest nodes with
harmless or negligible deviations from being marked as dishonest by other honest nodes.
On the other hand, we can follow a much stricter definition of enemy by marking nodes
that do not send at least M bits, send incorrect bits, send more than M bits, and so on.
This leads to additional protocol security by barring more forms of misbehavior, but may
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Protocol Smart(fi) for a bounded synchronous protocol fi, a set of parties N , and a maxi-
mum number of Byzantine nodes b < |N | ≠ 2.

Let rú be a bound on the final round before fi terminates.
Let M bound the total size of messages sent between any pair of parties in fi.

Local program (for node p).

• Run the given protocol fip.
• For each received message m, parse m as either an ordinary message PASS(mÕ) (in which

case pass mÕ through to fip) or else a padding message DUMMY(0ú), in which case discard
this message.

• For each outgoing message m generated by fip, intended for player q, send PASS(m) to
q.

• At the final round rú, let Mp,q be the total size of messages sent so far to q (including
any messages sent during this round). If Mp,q < M , then send a padding message
DUMMY(0M≠Mp,q ).

• After rú, for each player q ”= p, let Mq,p be the total size of messages received from q.
If Mq,p < M , then set Rp,q := 0 (an enemy report). Otherwise, set Rp,q := ◊ (a friend
report). Finally, send a transaction containing report(R̨p) to the smart contract, where
R̨p = {Rp,q}q ”=p is the vector of all of the reports from p about each other player q.

Smart contract program.

• The contract is parameterized by a set of players N , identified by their addresses (i.e.,
public keys).

• The contract must be initialized with an endowment (a quantity of digital currency) of
at least E Ø (|N |)(|N | ≠ 1) · ◊, where ◊ = |N |≠1

|N |≠1≠b M .
• The contract contains an entry point report(R̨p), which when invoked by party p, stores

the argument vector R̨p.
• By a fixed deadline time T , the contract receives a report Rp,q œ [0, ◊] from each party

p œ N about each other party q œ N . Any reports that are not received in time are
treated as a default value of 0.

• After time T , for each p œ N ,
– determine the reward as the sum of reports about p, so rewardp :=

ÿ

qœN |q ”=p

Rq,p,

and send rewardp to player p

Figure 1: Our protocol transformer, Smart(·), which provides incentive-compatibility for an
arbitrary synchronous protocol. Each party pads outgoing messages to the maximum size,
and reports to the smart contract about any “lazy” peers.
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unnecessarily penalize honest nodes that perform harmless or negligible deviations.

The entire SmartBAR(·) protocol is defined in Figure 1. For simplicity, we assume the
smart contract is initialized with an endowment E Ø N(N ≠ 1) · ◊. In practice, this endow-
ment might be provided by collecting collateral deposits from the participants or collecting
usage fees from users of the system, as described shortly in Section 3.5. We next describe
how the parameter ◊ is determined in order to satisfy the worst-case equilibrium notion.

3.2 Rationality Analysis

We now prove that following the SmartBAR protocol is a worst-case weak Nash equilibrium.
The utility for party p œ N as a function of a strategy vector ‡̨ is up(‡̨) = benefitsp(‡̨) ≠
costsp(‡̨). The overall benefits will be decided by rewardp and the overall cost is cost

msg

+
cost

report

. In the following, we use the notation ‡̨N≠{p} + ‡̨p to denote the union of the
strategy vectors ‡̨N≠{p} + ‡̨p.

In order to prove that rational parties gain the highest utility by following the recom-
mended protocol, we take the following steps: First we show a lower bound that following
the protocol earns p a minimum utility uú, regardless of the adversary’s choice of strategies.
Next, we partition the space of alternative strategies into classes based on how they behave
towards honest nodes. We define a simple family of strategies, called the “indiscriminate”
strategies, which act as representatives of these classes. We can prove that the indiscrim-
inate strategies perform just as well (in the worst-case) as any other strategy. Finally, we
show how to choose the protocol parameter ◊ so that uú is an upper bound for the utility of
any indiscriminate strategy. The setting of ◊ directly determines the overall collateral cost
(i.e., the required endowment) for the protocol.

Lemma 1. Regardless of the strategy ·̨B followed by Byzantine parties, if p follows fl̨p, then
p obtains at least ūp(fl) Ø uú where uú , (N ≠ 1)◊ ≠ (N ≠ 1)M ≠ b◊.

Proof. The ideal reward of the protocol is initially set to be (N ≠ 1)◊. The prescribed
strategy sends all possible messages, incurring the maximum message cost (N ≠ 1)M . Since
all the non-Byzantine nodes report p as a friend, the maximum report cost can be at most
b◊, which occurs when all b Byzantine nodes report enemy.

This bound holds regardless of how the protocol parameter ◊ is chosen. This worst-case
utility is incurred when the Byzantine parties follow the spiteful strategy.

The indiscriminate strategies, –“. We next turn towards proving an upper bound on
the utility of deviating from the prescribed strategy fl. We first define a family of simple
strategies, –, which we call the indiscriminate strategies. Looking ahead, these strategies
will serve as representatives for a partioning of the overal strategy space. The indiscriminate
strategies – by a fraction 0 Æ “ Æ 1, such that –“ misbehaves towards each other node with
probability “. More precisely, –“ is defined as follows: At the beginning of the game, for
each other party q a coin is flipped with probability “ (for some arbitrary percentage “). If
the coin flip succeeds, then p refuses to send any messages to q; otherwise p sends messages
to q according to the ordinary protocol.

The strategy –“ clearly causes p to incur a message cost of (1 ≠ “)(N ≠ 1)M . Since
this strategy witholds messages from exactly “(N ≠ 1 ≠ b) honest uncorrupted parties in
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expectation, the worst-case expected report cost is (b + “(N ≠ 1 ≠ b))◊. We therefore have
the following claim:
Claim 1. The worst-case expected utility for the strategy –“ is

ūp(–“) = (N ≠ 1)◊ ≠ (N ≠ 1)(1 ≠ “)M ≠ (b + “(N ≠ 1 ≠ b))◊ (2)

The Spiteful Strategy, ”. Following Clement et al. [8], we define a particular adversarial
strategy, called the spiteful strategy, which serves as a worst-case adversary (as we will see
shortly). The spiteful strategy initially behaves according to the prescribed strategy, but in
the final round it always reports enemy for player p, causing p to be punished.

If rational party p could determine which nodes were corrupted, then p would be able
to cut his losses by withholding messages from just the nodes in B. The spiteful strategy,
however, blends in with the honest parties. As shown by the following lemma, this means p
can do no better than to withhold messages from other nodes chosen uniformly at random,
as with the indiscriminate strategy –“ . In the following, we say that player p follows an
acceptable message sequence towards player q if p sends q a total of at least M bits.
Lemma 2. Consider a strategy ‡“ , such that in an execution with all honest parties (i.e.,
with the strategy vector {‡“} + flN ≠{p}), party p sends an unacceptable message sequence to
exactly “(N ≠ 1) nodes in expectation. Then the worst-case utility ū(‡“) is at most ū(–“).
Proof. Let “q be the probability that ‡“ sends an unacceptable message sequence to party
q œ N ≠ {p} when all parties besides p follow the protocol. By assumption, we know that

ÿ

qœN ≠{p}

“q = “.

First, note that against the spiteful adversary, p incurs an expected message cost of at least
(1 ≠ “)(N ≠ 1)M . Next, to bound the report cost, we will choose B ™ N ≠{p}, with |B| = b,
such that we minimize

ÿ

qœB
“q. This minimization guarantees that p sends an unacceptable

message sequence to at least (N ≠ 1 ≠ b)“ honest nodes in expectation, resulting in an
expected report cost of at least (b + (N ≠ 1 ≠ b)(“))◊.

Note the above proof above holds regardless of whether probabilities “q are independent.

Choosing the parameter ◊. We want to choose ◊ so that deviating from fl cannot
improve the worst-case expected utility. Starting from Lemma 2, it will su�ce if we can
guarantee that ūp(fl) Ø ūp(–“) for all “. We therefore solve the following:

ūp(fl) Ø ūp(–“) (3)
(N ≠ 1)M + b◊ Æ (N ≠ 1)(1 ≠ “)M + (b + (N ≠ 1 ≠ b)(“))◊ (4)

N ≠ 1
N ≠ 1 ≠ b

M Æ ◊ (5)

Theorem 1. If fi is a synchronous protocol that terminates after rú rounds and each party
sends a maximum of M message bits to each other party, then the transformed protocol
Smart(fi) is a worst-case weak Nash equilibrium.

Proof. When the SmartTRB protocol is instantiated with ◊ defined as in Equation 5, from
Lemma 1 we have that the worst-case expected utility when p follows the protocol ūp(fl) is
at least as good as any indiscriminate strategy ūp(–“). And from Lemma 2, we know that
the indiscriminate strategies perform as well in the worst-case as any other strategies.
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3.3 Comparison with the BAR Primer [8].

Our protocol and analytical framework is adapted from the bar model of Clement et al. [8],
but with several significant di�erences.

While Clement’s model requires an infinitely repeated game, our model considers the
bounded case. In the infinite settings, rational parties simply play tit-for-tat, immediately
and irrevocably “retaliating” against nodes that misbehave, preventing them from all future
rewards. In a finite setting, a node could misbehave in the final round without fear of
retaliation.

Additionally Clement’s model assumes that nodes gain a positive utility from the correc-
tion execution of the protocol itself. Alternatively, in our model, nodes gain a positive utility
monetary payments disbursed by the smart contract. We believe our utility model is more
realistic, especially in a marketplace setting (like that discussed in Section 3.5) where the
participants in a protocol instance are randomly assigned from some population of available
workers.

Together, these two modelling di�erences require a significant change to the protocol
and proof. First, while “retaliation” in Clement’s model involves requiring nodes to send
expensive “penance” messages (since that is the only way to inflict a punishment in their
model), the smart contract provides a direct alternative. Second, in the finite setting we must
rule out deviant strategies that withhold messages in a possibly randomized way, even in the
last round, as though “guessing” at which parties might be corrupted. We overcome this by
introducing a new family of “indiscriminate strategies” that serve as simple representatives
of the full strategy space. Finally, like Clement, our proof involves a “spiteful strategy,” that
acts as a worst case adversary. However, the “spiteful strategy” is di�erent in our model: it
misbehaves only in the final round, after it is too late for the victim p to retaliate.

3.4 SmartCast: An Incentive Compatible Consensus Protocol

As an application of our general protocol transformation, we now describe how to apply our
SmartBAR(·) transformation to a classic synchronous protocol, DolevStrong [11], in order to
obtain an incentive-compatible o�-chain consensus protocol.

The Dolev-Strong protocol for Terminating Reliable Broadcast. The Dolev-Strong
protocol is a classic algorithm for synchronous byzantine agreement using signatures, that
achieves optimal resilience by tolerating N ≠ 1. However, it provides no explicit incentives
for participants to follow. As seen in Clements et al., individual participants in the protocol
can reduce their computational cost by omitting messages.

The protocol runs for b+1 rounds, where the leader D sends a signed message containing
its input to each of the other nodes in the first round. Each node that receives the leader’s
message in the first round “accepts” the message, and then appends their own signature and
relays the message to every other node. If the leader fails to send a message to some node p,
some other node q will relay the message to p in any round r, as long as the relay contains
at least r signatures. p will then continue to relay the message. If the leader equivocates, it
is possible that a node accepts two or more distinct values. In this case, a node outputs ‹,
and only relays the first two such values received. In total, each node must therefore send a
maximum of 2N total messages, each containing an input value and up to b + 1 signatures.

We provide a listing of the Dolev-Strong algorithm in Figure 2, adapted from Kumare-
san’s thesis [14]. For a proof of security we refer the reader to [11, 14].

9



We let D œ N denote a designated leader. We let m œ {0, 1}C denote the sender D’s
input, and skD its secret key.

• (Stage 1): The leader D sends (m, signskD
(m)) to every party. It then outputs m and

terminates the protocol. Each other party p initializes ACCp := ÿ, and SETp := (v ‘æ ÿ),
a mapping from values to (initially empty) sets of signatures.

• (Stage 2): In rounds r = 1, ..., b + 1, perform the following:
– If a pair (v, SET) is received from some q, with v œ {0, 1}C , and if SET contains

valid signatures on v from at least r distinct parties including the leader D, and
if ACCp contains only 0 or 1 values, then p updates ACCp := ACCp fi {v}, and
SETp[v] := SETp[v] fi SET.

– Each party p checks whether any value v œ {0, 1}C was newly added to the set of
accepted values ACCp during round r ≠ 1. In this case, p computes signskp

(v), and
sends (v, SETp[v] fi {signskp

(v)} to every other party.
• (Stage 3): If ACCp = {v} for some v, then p outputs v. Otherwise p outputs ‹.

Figure 2: Definition of the DolevStrong protocol [11] for Terminating Reliable Broadcast
(adapted from Kumaresan [14])

From Reliable Broadcast to Atomic Broadcast. Atomic broadcast further guaran-
tees that messages can be committed by any node, not just a leader. In a synchronous
network, atomic broadcast can be easily built from terminating reliable broadcast, simply
by having nodes take turns becoming leaders. In brief, each node maintains a bu�er of
input values that have not been committed yet. When it is node p’s turn as leader, p broad-
casts the set of elements in its bu�er. When each turn ends, the nodes remove any newly
committed elements from their bu�ers.

3.5 Deploying Consensus Protocols with Smart Contracts

So far, we have discussed protocols assuming a fixed set of parties, with collateral provided
abstractly by a benefactor. We now describe an alternative deployment scenario where many
independent SmartCast instances are run concurrently, and where the participants in each
are randomly drawn from a large population of potential workers. Our idea is to build a
smart contract-based marketplace, SmartCast-Market, that matches up workers to protocol
instances.

A näıve approach might be to allow participants to join a SmartCast instance a first-
come-first-serve basis. This näıve solution would be vulnerable to Sybil attacks, where
malicious nodes join as fast as they can with numerous pseudonyms, hoping to fill up all
of the slots in a protocol and therefore crowd out honest nodes. Instead, our solution is to
allow nodes to join a pool of workers, and to allow task creators to deposit collateral and
add to a pool of pending tasks. Every epoch, workers are assigned to tasks in a randomized
batch. This prevents nodes from gaining too much influence within any particular protocol
instance.

If all participants in an instance follow the protocol, then the total payment for a task
must be P = N(N ≠ 1)◊. In principle, this could be collected from a combination of up-
front payment from the task creator, along with collateral deposits from the participants
themselves. Since participation is voluntary, we should ensure as a guideline that workers
never lose money by participating in the protocol. Thus if they deposit collateral, they must
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c o n t r a c t SmartCast {
mapping ( address => ui nt ) playermap ;

bool [ ] r e p o r t e d ;

address [ ] p l a y e r s ;

u i nt [ ] rewards ;

u i nt theta ;

u i nt d e a d l i n e ; // Deadl ine to r e c e i v e r e p o r t s

f u n c t i o n a s s e r t ( bool b ) i n t e r n a l { i f ( ! b ) throw ; }
m o d i f i e r a f t e r ( u i n t T) { i f ( b lock . number >= T) ; e l s e throw ; }
m o d i f i e r b e f o r e ( u i nt T) { i f ( b lock . number < T) ; e l s e throw ; }
m o d i f i e r o n l y p l a y e r ( ) { i f ( playermap [ msg . sender ] != 0) ; e l s e throw ; }

f u n c t i o n SmartCast ( address [ ] p l a y e r s , u int theta , u i n t d e a d l i n e ) {
var N = p l a y e r s . l e n g t h ;

// Each p l a y e r earns up to N ú theta i f they r e c e i v e a l l good r e p o r t s

a s s e r t ( msg . va lue == N ú N ú t h e t a ) ;

theta = t h e t a ;

d e a d l i n e = d e a d l i n e ;

f o r ( var p = 0 ; p < p l a y e r s . l e n g t h ; p++) {
p l a y e r s . push ( p l a y e r s [ p ] ) ;

rewards . push ( 0 ) ;

playermap [ p l a y e r s [ p ] ] = ( p+1);

}
}
f u n c t i o n r e p o r t ( u i n t [ ] r e p o r t s ) o n l y p l a y e r b e f o r e ( d e a d l i n e ) {

var p = playermap [ msg . sender ] ≠ 1 ;

a s s e r t ( ! r e p o r t e d [ p ] ) ; r e p o r t e d [ p ] = t r u e ; // only r e p o r t once

a s s e r t ( p e n a l t i e s . l e n g t h == p l a y e r s . l e n g t h ) ;

f o r ( var q = 0 ; q < r e p o r t s . l e n g t h ; q++) {
var r e p o r t = r e p o r t s [ q ] ;

a s s e r t ( r e p o r t >= 0 ) ;

a s s e r t ( r e p o r t <= theta ) ;

rewards [ q ] += r e p o r t ;

}
}
f u n c t i o n withdraw ( ) o n l y p l a y e r a f t e r ( d e a d l i n e ) {

var i = playermap [ msg . sender ] ≠ 1 ;

i f ( ! msg . sender . send ( balance [ i ] ) ) throw ;

balance [ i ] = 0 ;

}
}

Figure 3: Implementation of the Smart contract in Solidity.

get at least that collateral back (in expectation) despite a worst-case adversary. However,
since the parameter ◊ = N≠1

N≠1≠b M is chosen minimally, in the worst-case each honest party
just breaks even, receiving only (N ≠ 1 ≠ b)◊ in payment but incurring an equal message
cost of (N ≠ 1)M . Therefore there is no opportunity for collateral deposits to contribute to
the necessary endowment. Thus the task creator must pay up-front the maximum payment
N(N ≠ 1)◊, although the maximum total message cost is only N(N ≠ 1)M . Hence, the task
creator potentially pays an overhead of N≠1

N≠1≠b above the raw cost of the resources used.

4 Implementation and Evaluation

To evaluate the practical limitations of the SmartCast protocol, we develop a prototype
implementation of both the Dolev-Strong consensus algorithm and an Ethereum smart con-
tract capable of assigning various nodes to arbitrary consensus tasks.

Our Dolev-Strong implementation is written in Python, using ordinary threads and
TCP sockets, with messages signed using the ed25519 signature scheme. We evaluated our
protocol by running on a network of up to 16 Amazon EC2 instances. To simulate realistic
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Figure 4: Penalties imposed on nodes vs.
message failure probability.

Figure 5: Consistency failure vs. message
failure probability (analytic only).

network delays, we used the Linux tra�c control tool to limit bandwidth to 5mbps and
impose a 100ms latency per message.

In the synchronous network model, messages between honest parties are simply guar-
anteed to be delivered within a given time bound. However, in reality, it is necessary to
choose this timeout parameter concretely, based on estimates of network performance and
on a tolerance for failure. Too short a timeout, and messages between otherwise-honest
parties may fail to be delivered in time. In our experiments the payload for each broadcast
is a constant size of 1 megabyte (i.e., the size of a Bitcoin block today). We benchmarked
the network and computation load by performing several trial computations and measuring
the resulting message delivery time, and then fitting a normal distribution to the results.

We first analyze the e�ects of message failure on the individual participants bottom line.
If a node p fails to deliver a message to q in time, then q will inflict a punishment on p.
Since each node is required to send 2 messages, if each message fails with probability ’, we
expect the expected cost of punishments to be (N ≠1)(1≠(1≠’)2). In Figure 4 we compare
the actual punishment incurred in our experiment with this expected line.

Message delivery failures can also lead to inconsistent outputs. In the worst case, if the
maximum number of b nodes are actively attacking the network, then even a single failed
message among the remaining nodes can lead to inconsistency. This occurs in the following
scenario: suppose b nodes (including the leader) are corrupted, and send no messages at all
until round b (the next-to-last round). At the beginning of round b, one of the corrupted
nodes sends a message to a single honest node p containing a value v and b signatures.
The node p will accept (and output) the value v, and relay it to the remaining N ≠ 1 ≠ b
honest nodes. If even one of these nodes fails to receive this final-round message, then it will
output an inconsistent value ‹. Thus given b malicious nodes, and assuming messages fail
independently with probability ’, the uncorrupted nodes could output inconsistent values
with probability 1 ≠ (1 ≠ N2) probability (these are plotted in Figure 5).

4.1 Ethereum Smart Contract

We implemented the smart contract component of SmartCast in Ethereum’s Solidity pro-
gramming language. Our implementation includes:

• A smart contract for collecting reports, and handling payments. The entire program
listing is shown in Figure 3.
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• A smart contract implementing the “Marketplace” described in Section 3.5.
• A test framework using pyethereum, allowing us to measure the “gas costs” (i.e., trans-

action fees) for varying numbers of parties.

The Solidity language syntax resembles Javascript, and the intended e�ect of each line
should be clear in context (though we imagine readers may be skeptical of the details, given
several recent high-profile failures caused by subtle Solidity quirks [17, 9, 16]). Fortunately,
the Smart Contract program listing in 3 fairly closely matches the pseudocode in Figure 1.
We explain a few Solidity idioms that readers are likely to be unfamiliar with. Solidity
supports “modifier” macros, which are convenient for specifying preconditions which must
hold before a function is called (or else they throw an error). Furthermore, although the
pseudocode disburses all rewards immediately upon the deadline, Ethereum does not directly
support time-triggered events, thus the indirect withdraw function is necessary.

The Marketplace Contract. We also implemented a Solidity version of the “market-
place” smart contract described in Section 3.5. Below we describe its high level functions.
For space, we omit the full Solidity code listing; the full code will be made available online.

• registerTask: creates a new task, configured with any application-specific parameters
(e.g., description of a validation condition or a list of approved clients). The task creator
must include payment su�cient to pay the workers for the task.

• registerWorker: allows a worker to sign up, depositing any necessary collateral.
• finalize: shu�es the list of workers and list of tasks, and then assigns workers to tasks

until either a) no tasks are remaining, or b) not enough workers are available to fill the
remaining task. For each fully-assigned task, spawn a new instance of the SmartCast

contract. Return any deposited collateral to workers who were not assigned to a task,
and refund payment to task creators whose tasks were not fulfilled.

Our protocol relies on a random beacon; our prototype simply uses block.blockhash(0)

as a source of randomness, although this is known to be manipulable by miners [4, 19].

Ethereum Benchmarks. We tested our smart contract implementation using the
pyethereum.tester framework. Table 1 shows the required gas costs for varying con-
figurations of our application. We show results for only a few possible configurations: we
increase the number of parties P , but always fill two tasks with two workers left over. The
finalize method is the most expensive, since it grows with O(N) when shu�ing the list
of workers. However, the registerWorker and registerTask methods are each invoked N
times, and thus contribute about equally to the total.

Ethereum imposes a per-block (and hence, per-transaction) gas limit, which miners can
vote to change gradually over time. Although the simulator easily supports these large
transactions, today’s Ethereum blockchain enforces a limit of approximately 2 million gas
units, which the finalize operation busts when P Ø 20 (as underlined in Table 1). To avoid
this limit, an alternative approach would be to spread the finalize operation over several
contract invocations. This would require more complicated code, since each invocation would
need to explicitly load and save its internal state. Our application provides a motivation for
higher-level programming abstractions for transactions spanning multiple blocks.
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Table 1: Smart contract gas costs (normalized to dollars, based on current Ethereum param-
eters and price (as of Nov 14 2016)). Underlined costs are infeasible, exceeding Ethereum’s
current per-block gas limit.

(N,P,T) registerWorker registerTask finalize Tot
Gas (USD) Gas (USD) Gas (USD) Gas (USD)

(4, 10, 2) 110743 2.7/c 153347 3.8/c 1215702 30.4/c 2614826 65.4/c
(8, 18, 2) 110743 2.7/c 153347 3.8/c 1863111 46.6/c 4234665 $1.05

(16, 34, 2) 110743 2.7/c 153347 3.8/c 2966784 74.0/c 6678740 $1.70
(32, 66, 2) 110743 2.7/c 153347 3.8/c 5271727 $1.32 12047459 $3.01

Alternative implementation in Bitcoin. Our SmartBar protocol could still function
using only Bitcoin’s multi-signature transactions. The parties and the benefactor would
generate N2 transactions, where each transaction Tp,q rewards ◊ to party q conditionally on
a signature from p.

5 Conclusion and Future Work

We have adapted the work of Clement et al. [8] to the “smart contract” world, using cryp-
tocurrencies to provide incentive compatibility for o�-chain consensus protocols. Though
we give a specific instantiation based on the Dolev-Strong protocol for reliable broadcast,
our protocol is expressed as a generic transformation for arbitrary synchronous protocols.

Although the incentive compatibility notion we have adapted from Clement et al. [8] is
described as “worst-case,” modeling arbitrary Byzantine failures, many plausible attacks yet
lie outside this model. In particular, our definition counterintuitively rules out “bribery”
attacks, which are well-known though have not been observed in practice [3, 20]. Notice that
the “worst-case” notion is from the point of view of an individual participant; since accepting
a bribe makes an individual party richer, this is excluded by definition. Additionally, our
utility model assumes unilateral deviation, which rules out collusion attacks. Incorporating
both bribery and collusion into our model remains an important open problem.
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