Trust in Smart Contracts is a Process, As Well

Firas Al Khalil, Tom Butler, Leona O’Brien, and Marcello Ceci

Governance, Risk, and Compliance Technology Center
University College Cork
{firas.alkhalil,tbutler,leona.obrien,marcello.ceci}@ucc.ie

Abstract. Distributed ledger technologies are rising in popularity, mainly
for the host of financial applications they potentially enable, through
smart contracts. Several implementations of distributed ledgers have
been proposed, and different languages for the development of smart
contracts have been suggested. A great deal of attention is given to the
practice of development, i.e. programming, of smart contracts. In this
position paper, we argue that more attention should be given to the
“traditional developers” of contracts, namely the lawyers, and we pro-
pose a list of requirements for a human and machine-readable contract
authoring language, friendly to lawyers, serving as a common (and a
specification) language, for programmers, and the parties to a contract.

1 Introduction

The emergence of distributed ledger technology, due to the development of Bit-
coin [22], sparked a lot of interest in different communities: from academia to in-
dustry, and from technological and financial circles to philosophical ones [24127].

The amount of enthusiasm generated around distributed ledgers is indicative
of the potentialities that are waiting to be tapped into. What is undeniable,
today, is that the financial industry is paying very close attention to cryptocur-
rencies, especially Bitcoin, but also to other financial applications enabled by
distributed ledgers.

Which brings us to smart contracts, a concept first envisioned by Nick Sz-
abo [29], as far as 1995 so is claimed, and now believed to be enabled by the
advent of distributed ledgers. Several definitions for smart contracts exist, vary-
ing in their faithfulness to the original concept, and some of them only adding to
the existing confusion surrounding them. We will stand by the original definition
of Szabo: “[sjmart contracts [...] facilitate all steps of the contracting process”;
search, negotiation, commitment, performance, and adjudication are all parts of
the contracting process he mentioned [28].

Bitcoin, as a platform, is able to model and execute smart contracts, but with
a lot of restrictions due to its limited scripting language. This limitation, along
with the observation that cryptocurrencies can be viewed as “just another kind
of smart contracts”, led eventually to the development of Ethereum [31]: a decen-
tralised platform where smart contracts are first-class citizens; the distributed
ledger is equipped with a Turing complete programming language that enables

developers to write “arbitrary” contracts/code. More recently, platforms built
on top of Bitcoin and supporting a Turing complete smart contracts language
were developed (e.g. Rootstock [11]), and maybe more interestingly, platforms
for smart contracts with non Turing complete languages were also developed,
i.e. 7-Chain [6].

It is not a surprise that traditional programmers, if one may call them so,
are unable to carry out “economical thinking” [10]; indeed, they are also, in our
experience, ill-equipped to capture legal or regulatory thinking. The inverse can
be said of subject-matter experts, i.e. business analysts and lawyers; they are
most certainly unable to carry out “computational thinking”.

How to carry out the development of smart contracts in large financial in-
stitutions, where, traditionally, contracts are drafted by subject-matter experts?
More importantly, how can we reason on the legality of developed contracts? Ei-
ther manually by a lawyer, or automatically using a tool for compliance checking?
A failure to answer these questions inevitably contributes to the scepticism of
the financial industry —which has been put under the microscope by regulators
since 2008— about the future of smart contracts, and the industry’s reluctance
in adopting it.

In this position paper, we argue that trust in smart contracts, is also a
process; a bridge is needed to connect both sides of the abyss.

The rest of this paper is organised as follows: Section [2[shows how diverse is
the scene of distributed ledger technologies; Section [3| shows how irreconcilable
are the languages of programmers and subject-matter experts; Section [develops
our views on how can we build a bridge that enables trust, from an institutional
perspective, in smart contracts; we finally conclude in Section [f]

2 On Distributed Ledger Technologies

The introduction of Bitcoin by Satoshi Nakamoto [22] polarised the actors in the
financial industry since the beginning: some were extremely enthusiastic about
it, to the point where they claimed that Bitcoin is the “next big thing”, and
others were extremely sceptical about it.

The innovation of Bitcoin is not limited to the currency; the idea of a shared
ledger itself proved to be very powerful and sprung many platforms rivalling or
even complementing Bitcoin. The interested reader can refer to Tschorsch and
Scheuermann [30] for an excellent technical survey on distributed ledger tech-
nologies. Moreover, a quick look at the currently available platforms inspired
by Bitcoin, gives a good idea on the rising popularity of the technology: for in-
stance, coinmarketcap.com, a site that tracks market capitalisation of different
cryptocurrencies, lists 719 platforms.

Since its inception, Bitcoin provided a stack-based scripting language that
allowed developers to define the conditions to spend Bitcoins (e.g. requiring
multiple signatures), which revived the vision of smart contracts. However, this
scripting language is purposefully not Turing complete, which ultimately means
that it is limited in expressivity. In the following, we will take a look at four

different platforms that are meant to overcome Bitcoin’s scripting limitations,
illustrating the different technical choices one can make, regarding the develop-
ment of smart contracts.

The first platform we are going to look at, which is currently almost syn-
onymous to “smart contracts”’, is Ethereum [3I]. Ethereum was proposed as a
distributed platform independent of —yet very similar to— Bitcoin. To create dis-
tributed trust-less consensus and solve the double-spending problem, Ethereum
uses proof-of-work, just like Bitcoin, however, it provides the Ethereum Virtual
Machine (EVM) that runs a Turing complete stack based language, which opens
the doors to a hypothetically unlimited number of applications. Developers are
not forced to use the EVM’s opcode to write smart contracts. Indeed, they can
use Solidity or Serpent, which are high-level programming languages, similar
to javascript or python, respectively, that can compile to EVM byte code.

The second platform we are going to look at is Nxt E|, one of the earliest
smart contract platforms. Unlike Bitcoin and Ethereum, Nxt uses proof-of-stake
to achieve consensus and solve the double-spending problem. Moreover, Nxt
does not provide a scripting language to smart contract developers; instead, it
provides a RESTful API exposing a set of primitive operations (like spending,
storing strings, sending messages, etc.) that developers can invoke.

The third platform we will consider is Rootstock [II]. Unlike Ethereum, and
Nxt, Rootstock was developed to complement Bitcoin (as a sidechain [12]) and
provides its own Turing complete virtual machine (the RVM) to enable smart
contracts.

The fourth and final platform we will examine is 7—Chain [6]. The authors
of this platform argue that Turing completeness is not necessary for distributed
ledgers, because with Turing completeness comes undecidability, i.e. smart con-
tracts can go in an infinite loop and the network will never be able to predict this
behaviour. Indeed, Ethereum overcomes the problem of undecidability by forc-
ing the caller of the smart contract to provide gas with the transaction (bought
with ether, Ethereum’s own cryptocurrency); every instruction on the EVM con-
sumes a predefined amount of gas, and they are non-refundable, i.e. if the gas is
totally consumed and the smart contract didn’t finish execution, the gas is never
returned to the caller.

However, Asor [6] propose the use of an ontology [2] of rules, along with a
reasoner, to enable computations on the network. Authors of smart contracts
would write them in a totally functional programming language, like Idris [7],
that will be ultimately translated into the ontology. This approach will not only
make computations decidable, but it also allows the assertion of properties of
smart contracts that were impossible with Turing complete languages, e.g. if
the contract connects to the Internet or not, or if the contract fulfills some
interfaces/requirements/etc.

The interested reader can refer to the survey written by Seijas et al. [25]
for more information on scripting languages for distributed ledgers. The afore-
mentioned platforms illustrate some of the variations that exist in distributed

! nttps://nxt.org/

https://nxt.org/

ledger technology’s ecosystem. These platforms can differ not only in the tooling
and the language they expose for smart contract development, but also in the
paradigms that govern them. The development of smart contracts thus requires
a deep and serious understanding of the target platform. In the following section,
we will examine what hinders a fast adoption of such an enabling technology by
the financial industry.

3 Staring Into the Abyss

A close inspection of the literature shows that effort is being put in helping
developers author smart contracts, by either developing tools, or creating ab-
stractions.

Recently, Delmolino et al. [I0] reported on their experience in teaching smart
contract programming, using Ethereum, to undergraduate students at the Uni-
versity of Maryland. The authors concluded that smart contract programming
requires an “economic thinking” perspective that traditional programmers may
not have acquired. Indeed, students repeatedly made logical errors that ulti-
mately lead to money leaks, failed to use cryptographic primitives to secure the
contracts from attackers, failed to account for the incentives of contract callers,
and even made mistakes directly related to Ethereum.

This observation lead to the development of a Masters thesis by Pettersson
and Edstrom [23], and their objective was to help said programmers to develop
safer smart contracts. Their aim is to prevent 3 kinds of mistakes contract devel-
opers fall in: unexpected states, failure to use cryptography, and overflowing the
EVM’s stack. They propose to use of a functional programming language, namely
Idris. They developed a code generator that transforms code produced by an
Idris compiler to Serpent code, which can be subsequently compiled into EVM
bytecode.

In a different, yet related work, Luu et al. [21] noted that a class of security-
related bugs in smart contracts are due to the gaps in the understanding of the
distributed semantics of the underlying platform.

Another interesting work is that of Florian et al. [20], who propose the use
of logic-based smart contracts. They showed that this approach can complement
smart contracts written in procedural code, in terms of contract negotiation,
formation, storage/notarizing, enforcement, monitoring and activities related to
dispute resolution.

In a different take, Garcia-Banuelos et al. [16] showed how the business
process language BPMN can be mapped into executable smart contracts on the
Ethereum. This development lead Hull et al. [T9] to propose a Business Col-
laboration Language (BCL) for shared ledgers. Indeed, this BCL can be thought
of as the equivalent of SQL for relational databases, targeting shared ledgers,
regardless of implementation-specific details.

As far as we know, the only works that consider the issue of authoring smart
contracts from the subject-matter expert’s perspective are those proposed by
Frantz and Nowostawski [14] and Clack et al. [9].

Frantz and Nowostawski [14] propose a semi-automated method for the trans-
lation of human readable contracts to smart contracts on Ethereum. The authors
develop a domain specific language for contract modelling, where statements are
rules expressed in English, and that translates into Solidity. However, this so-
lution is very tied to Ethereum, and it is not clear how extensible or adaptable
it is. Additionally, it doesn’t cover the legal language that a lawyer would be
accustomed to.

Clack et al. [9] rightly identify two semantics of contracts:

Operational semantics: concerned with the execution of the contract on a
specific platform

Denotational semantics: that captures the “legal meaning” of the contract,
as understood by a lawyer.

The authors envision the use of smart contract templates, based on the idea
of Ricardian Contracts [I7/I8]. A Ricardian Contract is a digitlly signed triple
(P,C, M), where P is the legal prose, capturing denotational semantics, C' is
the platform specific code expressing operational semantics, and M is a map
(key-value pairs) of parameters used in P and C.

While the use of smart contract templates, based on Ricardian Contracts,
looks like a move towards the right direction, we argue that prose should not be
tied to code:

— While the semantics of legal language can be expressed as a set of deontic
defeasible rules, the code is rather procedural. The order of the instructions
in the procedure does not reflect the natural order of the contract clauses
expressed in natural language [20].

— The life-cycle of legal prose is independent from the life-cycle of the code.
For example, a lawyer might describe the terms of a contract in prose and
never come back to it, while a developer will —most likely— iterate through
different implementations (e.g. bug fixes).

— There is not a single smart contract platform, which ultimately means that
different parameters (key-value pairs of M) will be needed for different plat-
forms. For example, several works (e.g. [32I3/1]) describe data feed systems
that enable smart contracts to consume data feeds from outside the dis-
tributed ledger (e.g. a stock market index); while the notion of an external
feed might be familiar to a lawyer, its technical details, thus the choices
related to the adoption of one method over another, and eventually the
parametrisation is definitely out of her/his reach and/or interest.

In the following section, we will identify the key issues, as we see them,
regarding the adoption of smart contracts, and how we envision to solve them.

4 Trusting Smart Contracts

In Section [2| we tried to show, through a non-exhaustive list of examples, how
distributed ledgers can differ on a deep technical level, which requires a very

intimate technological knowledge by the implementer of the smart contract.
Afterwards, we showed, in Section [3] how current effort is mostly focused on
developing technical tools and infrastructure aimed at facilitating the technical
implementation of smart contracts. However, there is a major lacuna in all this:
that is the translation, or mapping, of the contract’s denotational semantics to
its operational semantics.

We share the view of Clack et al. [9] on the separation between operational
and denotational semantics of contracts. In fact, we argue that trust in smart
contracts can only stem from the ability of lawyers in financial institutions to
understand, express, and ultimately validate the denotational semantics of a
contract. However, we disagree on the assumption they make on the languages
expressing these semantics, i.e. any assumption on the correspondence between a
“legal language” and the “technical language” cannot be achieved, as the lawyer
cannot predict the behaviour of the code.

What is missing from all of the described work, is the realisation that the
involvement of a lawyer, especially in the heavily regulated financial industry, in
the authoring of contracts, not only smart contracts, is paramount, for her /his
knowledge on the regulation governing said contracts dictates the denotational
semantics. A lawyers’ knowledge of the explicit and implicit rights and obli-
gations, counterparties, stakeholders, schedules and penalties, and regulations
governing a financial contract needs to be represented.

Indeed, the financial crisis of 2008 was in part caused by the sub-prime lend-
ing practice that encouraged high credit risk borrowers to take on mortgages at
high interest rates that they had little ability to repay. These debts were pooled
together and engineered to be offered as low risk asset-backed securities. These
were heavily traded because of the perceived low risk while providing high re-
turns. The housing market in the US slumped setting off a chain reaction that
ultimately meant the mortgage-backed securities became worthless having di-
rect effect on the capital of the major global banks. Funding dried up and more
importantly, the trust that keeps the financial system performing dissolved. As
a result, regulation in the financial industry has grown exponentially.

There are two scenarios where the lawyer’s involvement is unavoidable:

— When the contract is partly fulfilled through code, because the lawyer can
only validate its textual version [20], i.e. the prose.

— When assessing the compliance of the contract with regulations, from the
point of view of both the legal requirements introduced by the regulation
(e.g. on financial activities, anti-money laundering, or consumer protection),
and of the effects that these regulations automatically bind to the contract
(naturalia negotii [15]).

Therefore, we think that proper authoring of smart contracts should involve
two main agents: the lawyer and the developer. The interaction between both
agents should be governed by a common language. The lawyer authors and
consumes contracts written in that language, while the developer uses it as
a specification guiding her/his implementation. This common language should
have the following properties:

— It should not alienate the lawyer, i.e. it should be as close as possible to the
language of contracts s/he is used to.

— It should be expressive enough to allow the authoring of smart and “not-so-
smart” contracts.

— It should be a Controlled Natural Language (CNL) with an unambiguous
grammar. The CNL should be mappable to a logical formalism which will
facilitate compliance checking with existing regulations.

— The concepts and actions described in the contract (i.e. the vocabulary)
along the clauses of the contract (i.e. the rules) should be shareable across
the network, which is important for both discoverability and negotiation —two
defining aspects of smart contracts— by human and autonomous agents.

— It should be able to represent the actions coded in the smart contract [9],
the duties and powers arising from the contract [I4], and the meta-rules
governing it (e.g. regulation on financial activities, Anti-Money Laundering
or consumer protection).

In our previous work [8] we describe Mercury, a language to capture regu-
lations for the purpose of compliance checking, alongside a methodology [4] to
capture legal knowledge and translate it to OWL [5]. Mercury is based on the
Semantics for Business Vocabulary and Business Rules [26] (SBVR), but the lan-
guage of smart contracts should not forcibly be based on SBVR, as long as it can
be mapped to a logical formalism, e.g. OWL, where reasoning on compliance is
feasible.

In a recently published technical report, English et al. [I3] investigated how
distributed ledger technologies and the Semantic Web can affect one another.
Indeed, the blockchain can provide secure resource identifiers (by ensuring au-
thenticity, human-readability, and decentralisation), and ontologies can provide
a unified way to understand blockchain concepts between humans, and exposing
blockchain data according to an ontology enables the interlinking with other
linked data and to perform reasoning.

Our proposal improves transparency, which is one of the major luring qual-
ities of distributed ledgers, and a determining factor of the trust-less trust in
the network. But doubt rises when it comes to the trust in the fact that the
contract, as written by the lawyer, was correctly translated into code, i.e. the
trust in the fact operational semantics faithfully represent denotational seman-
tics. One may argue that this trust can be guaranteed if there is a mechanism G
that automatically generates code from prose and/or a mechanism C, potentially
the inverse of G, that proves the correspondence of the code to the prose, but a
closer inspections shows that:

1. There is evidence from the literature that G and C can exist, especially
from [20] and 7-Chain [6]. Indeed, if the vision of 7-Chain is possible, then
there is an opportunity to go directly from denotational to operational se-
mantics using our approach, but this may imply the restriction of said trust
to one specific distributed ledger technology.

2. It is not really clear, at least for us, if G and C exist for shared ledgers that
use stack-based languages. This is an open question that deserves closer
attention, and can have one of two clear answers:

(a) It is possible, or practically feasible, which is great news for everyone, or

(b) It is impossible, or practically infeasible. Then it is only reasonable to
ask: is the existence of G and C a prerequisite for the establishment of
said trust? We conjecture that it is not, for two reasons:

i. The implementation processes of existing financial contracts in the
form of software is already opaque, especially to the consumer, and
our proposed approach would only facilitate transparency.

ii. Trust can be gained through the establishment of reputation: the
better you are in effectively transforming your specification to code,
the more reputable you are; the more reputable you are, the more
trustworthy you are perceived to be.

5 Conclusion

In this position paper, we expressed our point of view on how trust in smart con-
trast, from a financial institution’s point of view, can be enabled. It is true that
cryptographic guarantees are enablers of, and integral to, trust in distributed
ledger technology, but we argue that another kind of trust is needed; one that is
established by a process involving lawyers.

We showed how distributed ledger technologies can vary on a deep technical
level, which led to the development of tools and abstractions to help developers
in programming smart contracts. These developments are essential for the tech-
nological ecosystem, but we show how most of the existing work do not take into
account compliance with existing (and ever growing) regulations.

To that end, we set a list of criteria for a language necessary for the develop-
ment of contracts, executed on the ledger, or not, that is close to the legal prose,
transparent, and rooted in formal logic. We also identify a key research challenge,
which is the ability to translate the aforementioned language to executable code.

References

1. Oraclize: “The provably honest oracle service”. http://www.oraclize.it/, ac-
cessed: 2017-01-30

2. OWL 2 Web Ontology Language Document Overview (Second Edition). https:
//www.w3.org/TR/2012/REC-owl2-overview-20121211/} accessed: 2017-01-30

3. PriceFeed smart contract. http://feed.ether.camp/, accessed: 2017-01-30

4. Abi-Lahoud, E., O’Brien, L., Butler, T.: On the Road to Regulatory Ontologies,
pp. 188-201. Springer Berlin Heidelberg, Berlin, Heidelberg (2014), http://dx.
doi.org/10.1007/978-3-662-45960-7_14

5. Al Khalil, F., Ceci, M., Yapa, K., O'Brien, L.: SBVR to OWL 2 Mapping in the
Domain of Legal Rules, pp. 258-266. Springer International Publishing (2016),
http://dx.doi.org/10.1007/978-3-319-42019-6_17

6. Asor, O.: About Tau-Chain. ArXiv e-prints (Feb 2015)

http://www.oraclize.it/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://feed.ether.camp/
http://dx.doi.org/10.1007/978-3-662-45960-7_14
http://dx.doi.org/10.1007/978-3-662-45960-7_14
http://dx.doi.org/10.1007/978-3-319-42019-6_17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

BRADY, E.: Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming 23(5), 552-593
(Sep 2013)

Ceci, M., Al Khalil, F., O'Brien, L.: Making Sense of Regulations with SBVR. In:
RuleML 2016 Challenge, Doctoral Consortium and Industry Track hosted by the
10th International Web Rule Symposium (RuleML 2016) (2016)

Clack, C.D., Bakshi, V.A., Braine, L.: Smart Contract Templates: essential re-
quirements and design options. ArXiv e-prints (Dec 2016)

Delmolino, K., Arnett, M., Kosba, A.E., Miller, A.; Shi, E.: Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab.
In: Financial Cryptography and Data Security - FC 2016 International Work-
shops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26,
2016, Revised Selected Papers. pp. 79-94 (2016), http://dx.doi.org/10.1007/
978-3-662-53357-4_6

Demian Lerner, S.: Rootstock. bitcoin powered smart contracts.
white paper. (Nov 2015), https://uploads.strikinglycdn.com/files/
90847694-70£0-4668-ba7f-dd0c6bOb00al/RootstockWhitePaperv9-0Overview.
pdf

Demian Lerner, S.: Drivechains, sidechains, and 2-way hybrid peg
designs (Jan 2016), https://uploads.strikinglycdn.com/files/
27311e59-0832-49b5-ab0e-2b0a73899561/Drivechains_Sidechains_and_
Hybrid_2-way_peg_Designs_R9.pdf

English, M., Auer, S., Domingue, J.: Block chain technologies & the semantic web:
A framework for symbiotic development. Tech. rep., Technical report, University
of Bonn, Germany (2016)

Frantz, C.K., Nowostawski, M.: From institutions to code: Towards automated gen-
eration of smart contracts. In: 2016 IEEE 1st International Workshops on Foun-
dations and Applications of Self* Systems (FAS*W). pp. 210-215 (Sept 2016)
Frignani, A.: Some Basic Differences between the Common Law and the
Civil Law Approach. http://www.jus.unitn.it/CARDOZ0/Review/Comparative/
Frignani-1997/Washingt.htm (1996), accessed: 2017-02-02

Garcia-Banuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized Execution
of Business Processes on Blockchain. ArXiv e-prints (Dec 2016)

Grigg, I.: The ricardian contract. In: Proceedings. First IEEE International Work-
shop on Electronic Contracting, 2004. pp. 25-31 (July 2004)

Grigg, I.: On the intersection of Ricardian and Smart Contracts. http://iang.org/
papers/intersection_ricardian_smart.html| (Feb 2017), accessed: 2017-01-30
Hull, R., Batra, V.S., Chen, Y.M., Deutsch, A., Heath III, F.F.T., Vianu, V.:
Towards a Shared Ledger Business Collaboration Language Based on Data-Aware
Processes, pp. 18-36. Springer International Publishing, Cham (2016), http://dx.
doi.org/10.1007/978-3-319-46295-0_2

Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of Logic-Based
Smart Contracts for Blockchain Systems, pp. 167-183. Springer International Pub-
lishing, Cham (2016), http://dx.doi.org/10.1007/978-3-319-42019-6_11
Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. pp. 254-269. CCS '16, ACM, New York, NY, USA
(2016), http://doi.acm.org/10.1145/2976749.2978309

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

http://dx.doi.org/10.1007/978-3-662-53357-4_6
http://dx.doi.org/10.1007/978-3-662-53357-4_6
https://uploads.strikinglycdn.com/files/90847694-70f0-4668-ba7f-dd0c6b0b00a1/RootstockWhitePaperv9-Overview.pdf
https://uploads.strikinglycdn.com/files/90847694-70f0-4668-ba7f-dd0c6b0b00a1/RootstockWhitePaperv9-Overview.pdf
https://uploads.strikinglycdn.com/files/90847694-70f0-4668-ba7f-dd0c6b0b00a1/RootstockWhitePaperv9-Overview.pdf
https://uploads.strikinglycdn.com/files/27311e59-0832-49b5-ab0e-2b0a73899561/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
https://uploads.strikinglycdn.com/files/27311e59-0832-49b5-ab0e-2b0a73899561/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
https://uploads.strikinglycdn.com/files/27311e59-0832-49b5-ab0e-2b0a73899561/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
http://www.jus.unitn.it/CARDOZO/Review/Comparative/Frignani-1997/Washingt.htm
http://www.jus.unitn.it/CARDOZO/Review/Comparative/Frignani-1997/Washingt.htm
http://iang.org/papers/intersection_ricardian_smart.html
http://iang.org/papers/intersection_ricardian_smart.html
http://dx.doi.org/10.1007/978-3-319-46295-0_2
http://dx.doi.org/10.1007/978-3-319-46295-0_2
http://dx.doi.org/10.1007/978-3-319-42019-6_11
http://doi.acm.org/10.1145/2976749.2978309

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Pettersson, J., Edstrém, R.: Safer smart contracts through type-driven develop-
ment. Ph.D. thesis, Master’s thesis, Dept. of CS&E, Chalmers University of Tech-
nology & University of Gothenburg, Sweden (2015)

Reijers, W., O’Brolchdin, F., Haynes, P.: Governance in blockchain technologies &
social contract theories. Ledger 1(0), 134-151 (2016), http://www.ledgerjournal.
org/ojs/index.php/ledger/article/view/62

Seijas, P.L., Thompson, S., McAdams, D.: Scripting smart contracts for distributed
ledger technology. Cryptology ePrint Archive, Report 2016/1156 (2016), http:
//eprint.iacr.org/2016/1156

Semantics of Business Vocabulary and Business Rules (SBVR) Version 1.3. http://
www . omg . org/spec/SBVR/1.3/PDF (May 2015), http://www.omg.org/spec/SBVR/
1.3/PDF

Swan, M.: Blockchain Temporality: Smart Contract Time Specifiability with
Blocktime, pp. 184-196. Springer International Publishing, Cham (2016), http:
//dx.doi.org/10.1007/978-3-319-42019-6_12

Szabo, N.: Formalizing and Securing Relationships on Public Networks.
https://web.archive.org/web/20050217172626/http://wuw.firstmonday.
dk/ISSUES/issue2_9/szabo/index.html (1997), accessed: 2017-01-25

Szabo, N.: The Idea of Smart Contracts. https://web.archive.org/web/
20160831070942/http://szabo.best.vwh.net/smart_contracts_idea.html
(1997), accessed: 2017-01-25

Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: A technical survey on de-
centralized digital currencies. IEEE Communications Surveys and Tutorials 18(3),
2084-2123 (2016), http://dx.doi.org/10.1109/COMST.2016.2535718

Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151 (2014)

Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: An authenti-
cated data feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 270-282. CCS 16, ACM,
New York, NY, USA (2016), http://doi.acm.org/10.1145/2976749.2978326

http://www.ledgerjournal.org/ojs/index.php/ledger/article/view/62
http://www.ledgerjournal.org/ojs/index.php/ledger/article/view/62
http://eprint.iacr.org/2016/1156
http://eprint.iacr.org/2016/1156
http://www.omg.org/spec/SBVR/1.3/PDF
http://www.omg.org/spec/SBVR/1.3/PDF
http://www.omg.org/spec/SBVR/1.3/PDF
http://www.omg.org/spec/SBVR/1.3/PDF
http://dx.doi.org/10.1007/978-3-319-42019-6_12
http://dx.doi.org/10.1007/978-3-319-42019-6_12
https://web.archive.org/web/20050217172626/http://www.firstmonday.dk/ISSUES/issue2_9/szabo/index.html
https://web.archive.org/web/20050217172626/http://www.firstmonday.dk/ISSUES/issue2_9/szabo/index.html
https://web.archive.org/web/20160831070942/http://szabo.best.vwh.net/smart_contracts_idea.html
https://web.archive.org/web/20160831070942/http://szabo.best.vwh.net/smart_contracts_idea.html
http://dx.doi.org/10.1109/COMST.2016.2535718
http://doi.acm.org/10.1145/2976749.2978326

	Trust in Smart Contracts is a Process, As Well

