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Abstract. After the trials of remote internet voting for local elections in
2011 and parliamentary elections in 2013, a number of local referendums
has renewed interest in internet voting in Norway.
The voting scheme used in Norway is not quantum-safe and it has limited
voter verifiability. In this case study, we consider how we can use fully ho-
momorphic encryption to construct a quantum-safe voting scheme with
better voter verifiability.
While fully homomorphic cryptosystems are not efficient enough for the
the system we sketch to be implemented and run today, we expect future
improvements in fully homomorphic encryption which may eventually
make these techniques practical.
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1 Introduction

Norway conducted trials of remote internet voting for the 2011 local elections
and the 2013 parliamentary elections. The government discontinued the trials
in 2014, but a large number of local referendums in 2016 has caused renewed
interest in remote internet voting, especially for less important elections.

There are two issues with the scheme used in 2013 that should be improved.
The scheme is not quantum-safe, and voter verifiability is mostly lacking today,
due to an auditing protocol that can only be run by accredited organisations.
This is a study to see if we can improve on both of these shortcomings con-
currently. There are still some primitives lacking before this roadmap can be
implemented completely.

While it is unclear if a sufficiently large and reliable quantum computer will
ever be built to threaten the security of discrete logarithm-based systems, the
mere possibility that the encryption protecting ballot confidentiality may be
compromised in 10–30 years from now is a serious problem that needs to be
adressed.

Verifiability is difficult in Norway for two reasons. Revoting is used as an
anti-coercion tactic, and Norwegian ballots are sufficiently complicated to allow
Italian attacks, i.e., marking a ballot with a number of insignificant yet unique
changes. Also, the entire ballot is required for the count, so the election can
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not be considered as a collection of independent races. Voter verifiability is in
general not considered to be important by the Norwegian electorate (polls and
other studies generally finds high levels of trust in Norwegian elections [20]), but
even if there is no public demand for voter verifiability, better voter verifiability
than in the 2013 scheme would still be an improvement.

There are many schemes in the literature that achieve better voter verifia-
bility than the 2013 scheme, but in general, these are not quantum-safe and do
not facilitate very complicated ballots. All of the mainstream fully homomorphic
schemes are believed to be quantum-safe.

While the 2013 protocol [14] exploited the multiplicative structure of the
ElGamal scheme, a fully homomorphic scheme can allow us to use both addition
and multiplication. This enables much more flexible computations, which means
that we can arrange the decryption and counting process such that it is more
voter verifiable.

Alternative approaches There have been earlier attempts at completing elec-
tion tallies while the ballots are still encrypted, but not at this level of complexity.
Salamonsen [23] tried to apply Pailler encryption to Norwegian county elections,
possibly the easiest variant, and timed the effort needed to compute ciphertexts
and the necessary zero knowledge proofs, clocking in at between 2 and 5 hours
of work for the voter. Peeking ahead to Section 6.4, we see that our solution is
far more efficient than this.

Benaloh et al. [4] have described how one can use single-operation homomor-
phic encryption to tally a single transferable vote election. However, we tackle a
more intricate problem in this work that cannot be solved with the same tech-
niques. Chilotti et al. [8] have constructed a LWE based voting system in detail,
but assume that their bulletin board is honest. We remove that restriction, and
also get a scheme that can handle more complex (yet compact) ballots.

Contributions At a theoretical level, we are exploring a possible application of
fully homomorphic encryption. The idea of FHE was first proposed in 1978 [22],
but was first properly realised with Gentry’s 2009 breakthrough [12]. There
have been several proposed applications [1, 19], but many of those are purely
theoretical due to the tremendous amount of redundant data that would be
needed per user.

Next, this is a case study on how FHE could be used to make future Nor-
wegian elections both quantum-safe and more voter verifiable. Our proposed
protocol is borderline practical, at least taking into account the number of zero
knowledge proofs the existing protocol must check, and it can be further opti-
mised by implementation experts. We provide some experimental data to give
a rough estimate of the computation efforts needed. We expect further progress
in fully homomorphic encryption, which means that this protocol can eventually
become practical in the not-too-distant future.
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Organisation The next section provides an introduction to the technical nature
of Norwegian elections, followed by an introduction to lattice cryptography and
fully homomorphic encryption. In Section 4, we briefly recall the modelling done
in previous work. Section 5 partially paves the way for our instantiation of local
elections (Section 6) by discussing primitives we are going to need. Finally, we
argue for the security of the protocol in Section 7. The formal security modelling
and thus proofs have been omitted in this work due to space limitations.

Acknowledgements The authors wish to thank the anonymous reviewers for
constructive and useful suggestions.

2 Norwegian elections

The main idea in this paper is to do most of the ballot processing as computations
on encrypted data. This means that we need to give an arithmetic circuit for
counting. In order for this circuit to make sense, we first need to explain the
mechanics of Norwegian elections in some detail.

In all Norwegian elections, each district elects multiple members roughly as
follows. Parties nominate lists of candidates for each district. The voter chooses
one of these party lists as their ballot. Here we only discuss the details of the
local elections. The full version of the paper will also contain a description of
parliamentary elections and how to handle these with FHE.

Municipal elections To vote in a municipal election, the voter must first pick
a party list. Choosing a given party list gives that party a certain number of list
votes. The total number of list votes in a district will determine the number of
members each party gets.

The voter can then give person votes to zero or more candidates on the list.
The number of person votes each candidate gets determines which candidates
are actually elected as members for that party.

The party may also prefer a subset of their candidates. These candidates will
then automatically get an additional number of person votes equal to 25 % of
the number of ballots submitted for that party.

The voter can also optionally write in a certain number of candidates from
other party lists. These candidates will then receive person votes. However, writ-
ing in a candidate from a different party list will also transfer a list vote from
the voter’s party of choice to the party that the write-in candidate belongs to.

Consider the example ballot from Figure 1. If the number of members to be
elected is 29, each submitted ballot will initially give 29 list votes to the indicated
party, in this case the Crypto Party. But on this ballot, the voter has listed four
candidates from other lists, which means that the Crypto Party only gets 25 list
votes, while the Hacker Party (HP) gets two list votes, and the Analyst Party
(AP) and the Eavesdropper Party (EP) gets one list vote each.

When tallying, one first counts the list votes each party gets, and decide how
many representatives each party gets using a modified Saint-Laguë’s method.
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The original Saint-Laguë’s method is to create a table with one column for each
party, and with each party’s number of list votes written in the first row. In the
ith row, the number from the first row of the same column divided by 2i− 1 is
written. The k representatives to be elected are then distributed to the parties
with the k largest numbers. The modification used in Norway is that the numbers
in the first row are divided by 1.4 before distributing candidates, a modification
that slightly favours larger parties.

The next step when tallying is to decide which candidates are actually elected.
To do this, one counts all person votes given by voters (either to a candidate
on the party list, or by writing in a candidate from another party list) and the
person votes resulting from party preference. The candidates are then ranked
according to the number of person votes received. In the event of a tie, the order
of the candidates on the party list is used.

3 Lattices and fully homomorphic encryption

Lattices have long been important in cryptography, both as a tool to attack
systems and as basis for new cryptographic systems. Two recent developments
have made such lattice-based cryptography even more important, namely the
development of fully homomorphic encryption (FHE) and the renewed interest
in quantum-safe cryptographic schemes.

Fully homomorphic encryption is a form of encryption that allows one to do
certain computations on encrypted data. While first defined in 1978 [22], the
first plausible solution was Gentry’s breakthrough 2009 construction [12].

Fully homomorphic encryption allows us to evaluate a function described
by a circuit on a set of encrypted inputs, resulting in an encryption (of size
independent of the number of inputs and the circuit evaluated, called compact)
of the result we would have gotten if we instead just computed the circuit on
(unencrypted) inputs.

Lattice problems such as (ring) learning with errors ((R)LWE) are generally
considered to be hard to solve, even for a large quantum computer.

Crypto Party
Candidate list for the local elections 2019

1. � Gaius Julius Caesar
2. � Giovan Battista Bellaso
3. � Al-Khalil ibn Ahmad al-Farahidi
4. � Leone Battista Alberti
...

34. � Charles Wheatstone

Candidates from other lists
NAME PARTY
Alan Turing HP
Konrad Zuse HP
Charles Babbage AP
Eve Mallory EP

Fig. 1. An example ballot for a local election
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Lattice cryptography has seen a tremendous development since Regev [21]
found a quantum reduction from the natural lattice problems of finding the
shortest vector (SVP) or finding a short basis of independent vectors (SIVP), to
LWE.

Several authors have used LWE and RLWE to create fully homomorphic en-
cryption. The main ideas remain the same as in Gentry’s original construction.
The plaintext is masked with inner and outer randomness, where the innermost
one is denoted as noise. One can then typically perform additions and multi-
plications, though sometimes a NAND gate must be used. However, for each
operation, the noise level grows. When it reaches the same size as the outer
randomness, the ciphertext is no longer decryptable. Multiplications are usually
expensive in terms of noise, causing the noise to grow quickly, while additions
are cheap.

The noise problem can sometimes be solved using a technique called boot-
strapping, during which a ciphertext is encrypted again (though this encryption
could be done with no randomness), and the inner encryption is removed by
running the decryption circuit in an encrypted state. One can fine-tune the
parameters such that the resulting ciphertext has a lower noise level than the
original one. However, the bootstrapping process is computationally expensive,
so it is more common to select parameters based on the function one wants to
compute, so as to achieve a designated [multiplicative] depth (so-called levelled
fully homomorphic encryption). Many schemes have also provided solutions for
limiting the noise growth, so that one can avoid bootstrapping further.

FHE has reached a level of maturity where it is practical for some applications
and security levels [10]. We expect performance to increase still further. The
BGV [5] cryptosystem has been implemented by Halevi and Shoup [16], and
among others, Microsoft has also worked with implementations [18].

Formally, a FHE scheme consists of algorithms (Gen, Enc, Eval, Dec). The
unusual member of the set is Eval, which accepts a special evaluation key evk, a
circuit C and a number of ciphertexts c1, . . . cn such that

Dec(sk, Eval(evk, C, c1, . . . , cn)) = C(Dec(sk, c1), . . . , Dec(sk, cn)).

We will simplify this notation whenever it is convenient, and often just express
the circuit (or function) directly on the ciphertexts, even when we really want
them to be applied to the encrypted data.

The presentation of the circuits in this paper is fairly general, but we have
made sure to only use features supported by the BGV scheme. We refer to the
original publication [5] for the technical details, but quickly introduce some of
the high-level features provided by the scheme.

Plaintext slots Following an idea of Smart and Vercauteren [25], one can pack
several plaintexts into a single ciphertext and do SIMD operations (single-
instruction multiple-data) on the vector of plaintexts. The advantage is that
one saves space, and that one can perform operations on tuples of data in
the time it would to do it on a single value. All slots must have the same
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capacity. The plaintext space of the BGV scheme can thus be set to any
space Fn

q` for some integers q, ` and n, where n denotes the number of slots.
Noise management The authors use a system of modulus reduction for each

multiplication, such that the noise increases slower than it would otherwise
do. Hence, one can have smaller ciphertexts. The number of times one can
do the modulus reduction decides the maximal multiplicative depth.

Key switching In addition to reducing the modulus, one can also efficiently
transform ciphertexts from one key to another.

The term fully homomorphic encryption has two meanings, either that the
scheme in question can process any circuits of any depth (typically by using boot-
strapping) or that it can evaluate two operations, in contrast to group homomor-
phic schemes like ElGamal. In principle, we only need a levelled homomorphic
scheme, but will use the word fully to denote the concept.

4 Modelling and security requirements

We model our system with the same players that already existed in the Norwe-
gian e-voting project, namely the voter V with her computer and mobile phone,
a ballot box B, a receipt generator R, a decryption service D and an auditor A.
We quickly explain the existing motivation before proceeding. For more details,
see Gjøsteen [14].

Gjøsteen acknowledged that the user may not be in control of her own equip-
ment, for instance due to malware. One should therefore distinguish the voter’s
intention and what the computer actually does. When the ballot box receives an
encrypted ballot from the voter’s computer, it transforms and partially decrypts
the ballot, and forwards it to the receipt generator. Then the transformed bal-
lot is completely decrypted, and the correct receipt code is sent by SMS to the
voter’s mobile phone.

Both the ballot box and the receipt generator give the auditor information
about everything they have seen, so that he can compare and make sure no one of
them is ignoring information seen by the other. Any information dropped by the
ballot box should ideally be detected by the voter, because of a missing receipt.
(The soundness of this protocol is based on an assumption that the phone is
independent of the device used to vote. While this may have been an acceptable
assumption when the system was first introduced, it is less so today. Finding
another solution may be necessary, but is outside the scope of this paper.)

Next consider what happens when the election closes. Then the ballot box
should provide ciphertexts to the decryption service, which outputs the public
result of the election. The auditor verifies that the decryption service got the
right ciphertexts from the ballot box, and that the output was correct.

The security requirements can informally be summarised in the following list.

D-privacy The decryption service should not be able to correlate its input to
voter identities

B-privacy The ballot box should not learn anything from the ciphertexts
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R-privacy The receipt generator should not be able to correlate return codes
to what the voter chose

A-privacy The auditor should not learn anything about how anyone voted
B-integrity The ballot box must not be able to create a convincing encrypted

ballot such that its decryption is inconsistent with the related information
that is sent to the receipt generator

D-integrity The decryption service must not be able to alter the election out-
come

We conclude this section with a brief overview of some limitations that any
Norwegian voting system must deal with.

Privacy is important in Norwegian elections. The ballot should obviously be
confidential, but even the list of who voted is considered confidential in Nor-
way. In particular, this means that any voter verifiable scheme that reveals the
identities of the voters is unacceptable in Norway.

A second constraint is coercion resistance. It seems like the main defence
against coercion must be revoting in Norway, and the revoting could possibly
be paper revoting. Paper voting cannot involve any secrets or other material
from previous electronic voting, and a paper ballot should also supercede any
subsequent electronic ballot submission.

Related to coercion resistance, Italian attacks are easy in Norway, since
adding a random set of marks to a ballot will most likely make it unique and
have negligible electoral effect. This means that any public verifiability must
avoid publishing complete ballots. Today, the election authorities publish lists
of vote sums per party and person.

Finally, it seems like electronic voting must coexist with paper voting for the
forseeable future. This means that the electronic count must somehow combine
with the paper count before the final result is declared.

5 Primitives

We assume the existence of several primitives in this work. Some of them have
not been described in the literature yet, and should be considered open, but
feasible problems.

The main primitive we need is an efficient zero knowledge proof or argument
for correct decryption. These are well known for schemes such as ElGamal [7],
but for FHE, they only become efficient when applied to many ciphertexts con-
currently [2, 3]. However, much of the work can be done ahead of time, and the
protocol also supports distributed decryption, which will essentially guarantee
the security of the complete scheme. Note that one possible instantiation of the
following protocol would only require the verifiable decryption of a single ci-
phertext. Providing an efficient zero knowledge proof for that case can still be
considered an open problem.

Next, we also need a number of subroutines. Equality checking will be used
throughout the whole routine, and has been provided by Kim et al. [17]. We will
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denote it as a function

Eq(a, b) =
{

1 if a = b

0 otherwise.

The multiplicative depth for equality checking in the BGV scheme is given as
dlog(p−1)e+dlog `e where p is the characteristic of the field and ` is the order of
the extension. Although this will be a fairly high number, most equality checks
will run in parallell, which will help keep the noise under control.

If we want to implement the whole tallying as operations on encrypted data
(which we do not propose to do) we would also need sorting and division by
rational numbers. Both of these primitives exist. Emmadi et al. [11] analysed
a number of algorithms and concluded that Odd-Even Merge sort would work
best for the Smart-Vercauteren scheme [24]. It is reasonable that some of their
results will apply to the BGV scheme as well. Chung and Kim proposed that
one can use a continued fraction representation of rational numbers to reduce
the storage requirement for rational numbers with a given precision, and also
described how to perform divisions [9]. Çetin et al. [6] have demonstrated that
it is possible to compute fractions and even square roots by applying numerical
methods to the encrypted data.

6 Instantiation

Recall the BGV scheme introduced in Section 3. Let m be the number of parties
taking part in the election and n be the total number of candidates from all the
parties. We use the BGV cryptosystem with multiple plaintext slots, and the
goal is to get an encryption of the following tuple for each ballot posted by a
voter.

(p1, . . . , pm, p′1, . . . , p′m, p′′1 , . . . , p′′m, c1, . . . , cn) (1)
The tuple requires 3m+n slots. Although they will hold data of different length,
the BGV system requires them to be the same size.

Let v be the maximal number of voters from the voting district, and let k
be the number of candidates. The voter may list up to k/4 candidates from
other lists, which also places an upper bound on how many list votes that may
be transferred from the chosen party to another. The first m slots will hold
the number of times a list is selected, the next section holds the number of
list votes given away, and the final section of m slots holds the number of list
votes received. Finally, the last n items will hold person votes. The upper bound
for the plaintext space is then the maximal number of list votes that can be
transferred, vk/4, and the characteristic of the slots should in principle not be
chosen smaller, although it is very unlikely that one will ever reach this bound.

Remark 1. One can possibly save some storage overhead by using several inde-
pendent ciphertexts instead of larger ciphertexts with slots, or some combina-
tion of slots and separate ciphertexts, so that no slots have higher capacity than
needed.
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To vote, the voter must encrypt her ballot with a symmetric scheme, and
attach the key encrypted under the FHE scheme [13]. Assume that the voter
ciphertext encodes the vector

b = (p, s1, . . . , snp
, e1, . . . , en′), (2)

where p is the index of the chosen party list, si is a bit indicating whether
candidate i on the list receives a person vote and e1, . . . , en′ are the indices of
the representatives from different lists that have been written in on this ballot.
Remark 2. It is natural to ask why the voter simply cannot encrypt a vector
of the form (1). The reason is that we want to be able to validate the ballot
efficiently, something which would add considerable extra work if we had to check
ranges for vectors like the one above. Note that we need to check that s1, . . . , snp

are actual bits. One way to do this is to compute the product s(Enc(1)− s) for
each slot, and verify that it decrypts to 0. (There is an obvious weakness to this,
which is that if it does not decrypt to 0, then information will leak. We can
avoid this problem by normalising using the algorithm of Kim et al. [17], which
depends on the Frobenius automorphism x 7→ xq. This particular exponentiation
can be done for free in the BGV system. Of course, we may not care about the
privacy of malformed ballots.)

The ballot box should perform a bootstrapping after transforming the ci-
phertext to the FHE scheme. This guarantees that the voter cannot introduce
too much noise, which in turn can make the end result impossible to decrypt.

We now explain how to transform a ballot of the form in (2) to the form
of (1). Recall the function Eq that returns 1 whenever the two input values are
equal. Define In(a, S) =

∑
s∈S Eq(a, s), which will return 1 if and only if a is a

member of set the S.
Let {Pi} denote all parties taking part in the election, and let p′′i be the

number of list votes transferred to party Pi. By abuse of notation, let Pi also
denote the set of indexes for the candidates on the party list of party i. The
number p′′i of list votes transferred is then easily computed as

p′′i ← (In(e1, Pi) + In(e2, Pi) + · · ·+ In(en′ , Pi)

Note that each equality and membership check requires some multiplications,
but since they can all be done in parallell, the overall noise remains manageable.

To compute the number p′i of list votes given away, we need to identify the
right party, and then add the sum of all p′′i for that ballot,

p′i ← Eq(i, p) ·
m∑

j=1
p′′j .

The values pi are easily decided with Eq(i, p).
Finally, compute person votes to candidates from other lists. Let Pj be the

party that the candidate cj belongs to, and recall that p was the party selected
by the voter.

cj ← (1− Eq(p, Pj)) (Eq(j, e1) + Eq(j, e2) + · · ·+ Eq(j, en′))
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The first factor ensures that the candidates really are from a different list, in
order to avoid a situation where a candidate could get a person vote in two
different ways.

Remark 3. Note that we do not check for this when we are counting person votes
in and out. The reason is that it does not change the balance, and it should thus
not create any problems for the validity of the ballot or the count in general.
We aim at a forgiving system such that only destructive changes could cause a
ballot to be discarded.

Use a similar technique as above to add the person votes to the candidates
from the list chosen by the voter. One can also convert the whole vector into a
ciphertext, and use SIMD techniques [25] to add them as one. Note, however,
that one should still do basic range checking on the values as described in the
remark above.

Finally, we want to verify that a ballot is valid, by computing the polynomial∏
i≤j

(ei − ej),

which will be zero if and only if one candidate is listed more than once. This
polynomial requires many multiplications, so we propose that the end result is
decrypted publicly, so that the selection bit can be public. One can normalise
any non-zero value to 1.

6.1 Selecting votes to be counted
Since we allow voters to vote multiple times and even override all electronic votes
by voting on paper, we need a way to identify the ballots that should be included
in the final tally, while providing both voter verifiability and coercion resistance.
While in theory it is possible to do everything with FHE, it would probably be
more expensive than anything else in this paper, so we have opted for a more
classical solution, where the ballot box selects the ballots to be counted and uses
a combination of auditing and FHE to prove that its selection is correct.
1. The ballot box stores a secret record (vi, ci, si) for each ballot, where vi is

the voter’s identity, ci is the encrypted vote and si is a sequence number, or
equivalently, a timestamp.

2. When voting closes, for each voter vi that also submitted a paper ballot, the
ballot box adds a triple (vi, ci, si) where ci encodes a blank vote and si is a
sequence number greater than the highest inserted in the ballot box.

3. The ballot box shuffles all identities and sends the list to the auditor.
4. The ballot box publishes a list {(ci, s̃i, ṽ′i)}, where the tilde indicates that

the value has been encrypted using a FHE scheme and the identities {vi}
have been replaced with pseudonyms {v′i}. The list is ordered by identity and
sequence number. The end points may still leak secret information, so the
list should be treated as something circular. Concretely, we select a random
item on the list, and move the records following that item to the front of the
list instead.
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5. The ballot box sends the randomness used to generate the new ciphertexts
to the auditor for verification.

6. Define a function f by

f(vi, vj , si, sj) =
{

1 if vi 6= vj or si < sj ; and
0 otherwise.

The ballot box computes ũi = Eval(evk, f, ṽi, ṽi+1, s̃i, s̃i+1) for all i, and
counting modulo the number of ballots, such that the last item on the list is
compared to the first.
The function f can be implemented by combining the equality checker de-
scribed above with an inequality function [11].

7. The ballot box multiplies all ũi. This value should later be decrypted. Any
auditing parties should accept that the list is correctly ordered if the product
decrypts to 1.

8. Next define a function g such that g(vi, vj) is 1 if and only if vi 6= vj and 0 oth-
erwise. The ballot box computes selection values z̃i = Eval(evk, g, ṽi, ṽi+1),
cycling to the top of the list as above. The list of ciphertexts that should be
counted is {c′i = z̃ici} .

6.2 Tally

The final tally now becomes trivial. The ballot box simply adds all the encrypted
vectors {c′i}. We suggest to pass these sums on to the decryption service for
decryption and deciding which candidates are elected based on cleartext vote
counts (number of list votes and number of person votes).

Of course, it is possible to do Saint-Laguë’s method with encrypted data.
While we do not recommend this, since the paper ballots must also be counted,
we note that it is possible, and simply an engineering problem to analyse the
complexity and then adjust the parameters to allow for the circuit depth. We
note, however, that it may result in even bigger ciphertexts. Possibly the most
interesting challenge would be to handle the precision of the rational numbers
that necessarily would occur, and then handling the sorting.

6.3 Receipts

Sending a receipt to the voter becomes easy when using an FHE scheme. The bal-
lot box homomorphically applies a voter-specific one-way transformation on the
ballot, followed by a key-switch, a feature offered by the BGV cryptosystem. We
do not propose such a function here, other than to state that a light-weight keyed
hash function would do the job nicely. While the main purpose is to facilitate a
greater multiplicative depth, the transformation key can only be built using both
of the secret keys, but it leaks neither. Hence, we can give the transformation
key exclusively to the ballot box (and the auditor), while the receipt generator
is the only party to know the decryption key for the transformed ciphertexts.
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After the receipt generator decrypts, it sends an SMS with a value derived
from the transformed ballot, with which the voter can verify that the ballot has
been received correctly. The auditor should be sent a copy of all ciphertexts
received by the receipt code generator.

Due to the problem of phones being closely linked to the user’s other equip-
ment, the receipt system should as a whole be put under closer scrutiny.

6.4 Parameter selection
Using the above algorithms, we can estimate the parameters needed for the
protocol. For a conservative estimate, we can look at the numbers for the largest
municipality, Oslo. There are about 500,000 eligible voters, and the last local
election saw 17 different party lists with a total of 659 candidates. The city
council consists of 59 members. This means that the voter can list at most
15 names from other parties on her ballot, so the greatest number we need to
handle is about 7,500,000 ≈ 223. Then equality checks will need a depth 23
circuit. We can now compute how much depth we will need after converting
from the symmetric ciphertext.
– p′′i can be computed with many equality checks in parallell, but no other

multiplications, hence depth 23. The same holds for pi.
– p′i is one equality check multiplied with a sum of p′′i , so we need 24 multi-

plications. The candidate slots are also the result of a multiplication of two
equality checks.

– Computing the validity check requires
(15

2
)
multiplications. However, they

can be arranged in a tree of depth 7.
– Each value ũi requires an equality check and an inequality check. After that,

all such ciphertexts must be multiplied, which can be done with depth of
approximately 20.

– The selection bit z̃i takes a single comparison, and is multiplied to the rest
of the ballot, adding one level to some of the previous results.

In addition comes the depth required to send the receipt, but that is depen-
dent of the function employed to generate the return codes. Note that those
computations will be in parallell to those above.

Finally, we can conclude that no part of the computation requires a depth
greater than 50.

The number of slots needed in the Oslo case is 3 · 17 + 659 = 710.
We ran the bundled general test program of HElib [15, 16] with the above

parameters on a server running Ubuntu 14.04 on Intel Xeon 2.67 GHz processors
with a total of 24 cores and 256 GB of memory. The program ran the key
generation on a single core, and used a maximum of 8 cores for some sample
ciphertext operations. The maximum memory usage was in the order of 20 GB.
The complete process took 4:52 minutes, with key generation taking about half
of that time. While this order of magnitude is unreasonable for a single voter,
it may be feasible for an election system, as long as the feedback to the voter
is sufficiently quick. Implementing the above algorithms efficiently is an open
problem.
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7 Security

A formal security proof along the lines of Gjøsteen [14] is too long for this paper,
and we defer such a proof for a full version of this paper. However, we briefly
discuss the general security properties, and then discuss coercion resistance in
some detail.

The system is not designed to be secure if two or more of the ballot box,
receipt generator, decryptor or auditor are corrupt. However, when at most one
of them is corrupt, encryption and careful use of key-switching ensures that the
receipt generator and the decryptor cannot decrypt public ciphertexts containing
sensitive information (such as ballots and voter identities), ensuring that we have
both R-privacy and D-privacy. (For instance, the published ciphertexts only
contain ballots and pseudonyms, so while a corrupt decryption service could
decrypt them, it would learn nothing about which voters these ballots came
from.) The encryption itself and the general features of the protocol ensure B-
privacy and A-privacy.

Since the computation on encrypted data can be redone by any interested
party using published information, the scheme is trivially almost end-to-end
verifiable, and also has B-integrity. This follows from the correctness of the
selection and counting circuit we have designed, and the correctness of the FHE
scheme in use. An interested voter can verify that the ciphertext she submitted is
listed in the public record and then redo the computation of the counting circuit,
recreating the ciphertexts containing the results. The zero knowledge proofs will
then ensure that the published election results are consistent with the verified
encrypted results. This gives us D-integrity.

The gap in verifiability lies in the selection of votes to be counted, where a
corrupt ballot box may insert fake votes that a corrupt auditor may choose to
ignore. (An honest auditor should either notice that electronic votes lack a valid
digital signature, or that fake paper votes have been inserted.) Even with this
gap, however, our proposal is a significant improvement on previous schemes
used in Norway.

– If the ballot box alters a ballot before forwarding it to the receipt generator,
then the voter should get an incorrect receipt. If the ballot box alters a ballot
after the receipt generator has seen it, the auditor will notice.

– The receipt generator cannot alone compromise the integrity of the election.
Privacy follows from careful use of key-switching and using an appropriate
function to generate receipts with a per-voter key.

– The decryption service must prove correctness of decryption, and the in-
tegrity of the result follows from this proof.

– The cryptosystem ensures that an auditor cannot read any individual votes.

We defend against coercion by letting a voter revote electronically any num-
ber of times, and decreeing that a paper ballot will override any earlier or later
electronic votes. This is within the requirement of the Norwegian Election Act,
which states that “[t]he purpose of this Act is to establish such conditions that
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citizens shall be able to elect their representatives to the Storting, county coun-
cils and municipal councils by means of a secret ballot in free and direct elec-
tions.” [26] Let us now consider how a coercer could be able to succeed.

It is clear that any coercer cooperating with a corrupt ballot box or auditor
will be able to defeat revoting as an anti-coercion strategy. We therefore assume
a coercer that sits next to the voter as she casts her ballot, and assume that
the coercer is also able to record the precise ciphertext, and himself transform
it into the FHE ciphertext ci that will appear in the public records.

If the voter now revotes electronically, and the coercer afterwards returns and
forces her to vote under surveillance again, then the public list of ciphertexts will
reveal that the voter revoted. However, any paper vote will be sorted after the last
electronic vote, so it cannot be discovered by the adversary. Also note that since
the identities are permuted and encrypted, he cannot guarantee that a paper
vote will be sandwiched between an electronic vote and the first vote of someone
of whom he knows the identity, making the paper ballot truly anonymous.
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