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Abstract. We explore the possible ways modern cryptographic methods
can be applied to the Þeld of medical data analysis. Current systems
require large computational facilities owned by the data owners or exces-
sive trust given to the researchers. We implement one possible solution in
which researchers operate directly on homomorphically encrypted data
and the data owner decrypts the results. We test our implementation on
large datasets and show that it is su�ciently practical that it could be a
helpful tool for modern researchers. We also perform a heuristic analysis
of the security of our system.

� Introduction

Modern medical dataset analysis methods take large sets of medical records
and attempt to extract truths about the underlying population. Because of
the sensitive nature of the data being analysed and regulations requiring strict
limitations on the sharing of that data, it is di �cult for researchers to share
datasets. Today, it can take up to a year before a researcher can actually begin
the computational process of analyzing a dataset that they did not collect on
their own. Data is often shared in sanitized form, with much of the data removed;
this sanitization process requires time, labor and statistical expertise. Some data
owners have chosen to allow researchers to send their queries to the data owners,
who perform the analysis on the researcherÕs behalf. The process of analyzing
medical datasets requires large amounts of computation on the part of the data
owner for each question posed by a researcher. To best serve the medical research
community, data owners must acquire technical expertise to properly anonymize
and maintain datasets or contract a trusted third party to do it for them.

In this work we consider an institutional medical researcher, such as a member
of a university or the research division of a company, interested in answering some
query but who is without access to the required data. While it may be infeasible
to independently gather data, it is likely that there exists a dataset containing
su�cient information to answer the researcherÕs query. The data owner may want
to share with the researcher but because the information is related to the medical
history of patients, and therefore considered sensitive, sharing that dataset may
be a complicated process.

We explore existing cryptographic methods in an e�ort to tackle the two
main problems with the current way of sharing medical data. First, we wish to
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move the burden of cost from data owners to the researchers who want access to
the data. All modern solutions that properly secure patient data require data
owners to make large investments in hardware and technical expertise. While it is
possible for a data owner to recoup those costs over time, requiring large startup
costs deters the sharing of data and charging for access to the dataset limits the
kinds of researchers able to use it. Second, it takes far too long for a researcher to
acquire and analyze a dataset that has been properly anonymized and certiÞed.
Even after proper permission has been acquired, it may be extremely inconvenient
to actually run analysis or to tweak the nature of the researcherÕs query.

� Objectives

In order to build something useful to the medical research community, we attempt
evaluate the usefulness of Fully Homomorphic Encryption while still ensuring the
following six properties. These objectives were derived from conversations with
professionals working in the medical research industry. Additionally, the analysis
we ran to conÞrm that our system was practical enough to be used by members
of the medical research community were also informed by these conversations.

Authenticity of results - the results obtained by the researcher should be
as authentic and accurate as possible without compromising the privacy of
individuals.

A rich range of possible analyses - virtually any analytical technique should
be possible to the researcher. More formally, the limits on the possible set of
operations should depend only on the parameters chosen for the FHE scheme.

Minimal computation on the part of the data owner - the computational
responsibility of the data owner should be almost entirely limited to preprocessing
the dataset a single time. We propose that a data owner should only have to
provide a single server to allow for large numbers of researchers to perform
analysis.

Privacy for individuals in the dataset - it should be impossible for a re-
searcher with auxiliary information to learn anything about an individual in the
population using legitimate analysis techniques. SpeciÞcally, we invoke di�erential
privacy to protect information about individuals.

Security against adversarial researchers - an adversarial researcher attempt-
ing to extract information about individuals from the dataset should be caught
with very high probability.

Practicality - our system should shorten the time it takes for a researcher
to conceive of a researcher question to when their computational analysis has
Þnished. The actual time it takes for a single run of the analysis process may
take longer than current methods, providing this overall time shrinks.

While many existing solutions address some subset of these objectives, none
accomplish all of them. In particular, existing systems lack practicality, proper
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cost distribution or a large space of possible computation. Anonymization presents
security concerns and lacks practicality due to the long wait times for dataset
acquisition. Analysis as a service requires a misappropriation of costs between
the researcher and the data owner. Attempts like [!" ] have managed to be both
practical and to outsource computation, but failed to allow for rich space of
analytical techniques required by the medical industry. Our construction satisÞes
all the requirements of researchers in the medical industry.

� Background

To understand our motivation, it is important to consider the ways in which
modern medical dataset analysis is done. The reality of current analysis systems
is that they are both extremely expensive for the data owner and take a long
time for the query of a researcher to be fully answered. Researchers interested
in Þelds as diverse as drug side e�ects, public health and genetics all utilize the
large amounts of data regularly collected by medical professionals, insurance
companies, or governments to make new discoveries or conÞrm theories. Under
ideal circumstances, analysis is done with large sample sizes - discussions with
professionals in the Þeld lead us to believe that most studies utilize around!## ,###
data points. The analytical models used by researchers vary from simplistic count
and average to complex regressions or machine learning. While complex methods
are gaining in popularity, measurements like regression, covarience and averages
remain the primary tools employed by researchers.

There are various practical constructions employed to allow external re-
searchers access to private data. The obvious, simple, and clearly insecure solution
is to naively share the data without any security. While e�cient, this makes the
assumption that the researcher is a trusted party, which is often invalid.

�.� Anonymization

Anonymization is a technique in which large amounts of information, hopefully
all irrelevant, is purged before a dataset is shared with a researcher. The goal of
anonymization is to allow an untrusted third party to conÞrm results or perform
original analysis without revealing any personally identiÞable information. The
process is computationally expensive because it requires a data owner to reprocess
the dataset each time a researcher posits a new query. For example, a researcher
may start the process interested in a certain subset of the information about each
patient only to later decided that other qualities of each patient are also required
to conÞrm their hypothesis. This method also makes it extremely expensive for a
researcher to explore a dataset without a speciÞc hypothesis in mind. Additionally,
there have been recent results showing that anonymization is not as secure as
previously thought [!$ ]. While a single instance of an anonymized dataset leaks
minimal information under most circumstances, combining it with a version of
the same dataset anonymized for a di�erent query can certainly allow a malicious
researcher to compromise the privacy of individuals.
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�.� Analysis as a Service
This model has becoming increasingly popular recently as the medical community
has adopted cloud technologies. Data owners or trusted third parties provide
a service through which researchers are able to submit requests for work. The
data owners or their surrogates then perform the computation over the dataset
stored as plaintext. This requires data owners to acquire the technical expertise
to maintain the system. More importantly, this forces data owners to shoulder
the cost of providing their data to the medical research community or possibly
charge researchers for the use of their data which would discourage collaboration.

�.� Cost Consideration
While both anonymization and analysis as a service are common models for
sharing statistical datasets, cutting-edge systems combine both techniques. The
largest data owners maintain massive datasets on expensive computational in-
frastructure. When a researcher wants to answer some new query, they access
the infrastructure itself, either physically or over a secure channel. Then, based
on the requirements of their query, they select a certain anonymization of the
dataset to use. A certain anonymization of the data may leave more information
about income, but may contain little geographical information. Each time a new
anonymization of the data is required by a researcher, the data owners must
prepare a new subset of the data and get statisticians to certify it.

Once an appropriate version of the dataset has been prepared, the analysis is
run on the data ownerÕs systems. Because of inference attacks, allowing researchers
to remove even anonymized datasets can be dangerous, especially when the
researcher is likely to return to the same data owner to perform a di�erent
analysis soon afterwards. The two main concerns addressed in this work are time
and cost. It is not uncommon for the time between the conception of a question
and the moment when computational analysis begins to be months or even a
year.

It is nearly inevitable that research will involve high costs for at least some of
the parties involved. While typically one might assume that the burden of cost
should be on the researchers themselves, given that they are the ones directly
beneÞting from computation, it is often the data owners who are forced to acquire
expertise and infrastructure to service the researcher community. One company
with which we spoke had $! million in hardware costs to support the needs of
researchers. While costs might eventually be recouped by charging researchers
for use of the dataset, the costs from purchasing hardware alone may make it
infeasible for a data owner to securely share their data. Especially if their dataset
becomes desirable to many researchers, the costs of scaling up their operations
quickly make it impossible to support widespread interest.

�.� Existing Cryptographic Options
In order to construct a system that addresses the problems above, we call upon
existing cryptographic primitives and systems. Some, like di�erential privacy,
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have been widely used in the Þeld and their limitations are well understood. The
practicality of others, like FHE and homomorphic signatures, has yet to be fully
tested. Because we are attempting to build a practical system that minimizes
the amount of time between the medical researcherÕs initial query and receiving
the Þnal answer, we choose our cryptographic primitives carefully. Additionally,
various primitives may be helpful in achieving some of the objectives in Section
" but may prohibit the achievement of others. We give a broad summary of
the cryptographic methods chose to use in our case study below. We include
descriptions of methods we chose not to utilize in the program version of this
paper, including [!Ð%,&, !" , !' , !( , !&, !) , "' ].

�.� Fully Homomorphic Encryption
FHE allows for addition and multiplication on encrypted data without the need
for decryption. The Þrst construction of FHE was published in [!%] but was
too ine�cient for practical computation. Subsequent e�orts, most notably the
BGV construction in [ ( ], have attempted to increase the e�ciency and modern
constructions are teetering on the edge of practicality. To make the schemes more
usable, there has been a push towards ÒleveledÓ homomorphic encryption schemes
which can compute a certain depth of circuit before inherent noise renders the
ciphertext useless. For a full background on the intricacies of FHE and a more
complete list of citations, refer to ["" ].

Smart and Vercauteren proposed an addition to the BGV FHE in ["# ], in
which many plaintext values could be encoded into a single ciphertext. To do this,
the plaintext values are put into a vector and all additions and multiplications are
computed entrywise. This allows for single instruction multiple data operations
and signiÞcantly increasing the e�ciency of the scheme. Our implementation
requires that the FHE scheme used supports Smart-Vercauteren plaintext packing
and for the rest of this work all homomorphic operations can be considered to be
done within this framework.

�.� HELib
The best available implementation of a modern leveled FHE is the C++ library
HELib. While most of the code currently written using HELib implements rela-
tively simple computations, our testing shows that is both robust and reasonably
e�cient for more complex computations. The FHE scheme it implements encodes
integers into BGV ciphertext, supporting addition and multiplication operations.
The underlying plaintext values are added and multiplied modulo some prime.
The choice of primes, the maximum level of the circuit, and security parameter
all inßuence the size of the ciphertext and the e�ciency of the operations. Details
about the use of HELib and the FHE scheme it implements can be found at [!* ].

�.� Di�erential Privacy
Di�erential privacy prevents an attacker from learning anything about individuals
while still gleaning meaningful information from aggregated statistics [!# ]. This
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is not the only notion of privacy that can be applied to statistical datasets, but
it has recently become the most popular. With the rise of laws requiring the
protection medical data, ensuring it is impossible to recover the information of
any given individual e�ectively shields data owners from legal action.

� Construction

We assume a data ownerD with a medical dataset D

initial

of vectors d œ
Rn. D transforms the dataset into the proper format, encrypts it using fully
homomorphic encryption asD

ú = Encrypt(D
formatted

) and publishes it on the
internet. A researcher R then prepares a program to be run on the dataset,
described in the form of a transcript T and performs the computation T (Dú).
The result of this computation is a ciphertext c with an embedded integrity
check and transmits c to D. Finally D veriÞes that T and c match, computes the
decryption, adds noise to guarantee di�erential privacy and sends this Þnal result
to R.

�.� Dataset Formatting

We assume that the data ownerD has some set ofD = {d
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Rn where each dimension ofd
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represents part of the medical record for patient
i. Each vector d is made up of data entries– and binary entries —. The data
entries are real valued and represent information about the patient like age, blood
pressure or income. The binary entries represent the qualities of a patient, like
the presence of a medication or medical condition.
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If D has a dataset that is formatted di�erently, it is clear how to transform any
dataset into this format. The only intricacy of this transformation is that all
values in the vector must be integer valued, while real medical datasets also
contain both text and real-number values. For the most part, this problem can
be easily solved while only losing a little granularity in the data. Real-number
values can be scaled and rounded such that the information is still rich enough
to convey meaning. Text data can either be automatically binned, adding a—

value for each possible value of that text Þeld, or can be manually translated into
a integer scale as appropriate.
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�.� Data Binning

Data binning beings with D dividing the range of each data entry –
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The increased number of bins for each– give researchers greater granularity

of possible computations but also increases the size of the dataset. Because this
dataset will be prepared only once, the data owner chooses the maximum possible
granularity for all researchers at once. Many Þelds, like age or income, have
natural bin sizes while other Þelds will be completely at the discretion of the
data owner.

�.� Integrity Check Embedding and Encryption

The FHE scheme used in encrypting the dataset should include Smart-Vercauteren
plaintext packing. This property allows a vector of plaintext values to be encrypted
into a single ciphertext and all operations are computed entry-wise. The length
l of the plaintext vectors is determined by the various parameters to the FHE
scheme, but in general we will consider vectors of about!### values.

Each plaintext vector contains values from a single row of the database (ie.
a speciÞc– or — from multiple patients). Each vector begins l

2

values from the
dataset, in the order listed in the dataset. Thus, the Þrst ciphertext will be an
encryption of the –

1

entry from the Þrst l

2

patient record; the second will be
the –

1

entries from the next l

2

patient records, and so on. For each such vector,
D embeds the tools to allow for rapid veriÞcation.D selects a random valuefi
and a random permutation Õ, both to be used for all vectors in theD. For each
entry e in the vector v, D computese

Õ = fie mod p, where p is a prime and a
parameter to the FHE scheme, and appends that value tov. Next, D appends a
di�erent random value k to the end of each vector and recordsk for each vector.
Finally, D applies Õ it to all vectors in D.
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To encrypt the dataset, D runs FHEKeyGen() to generate a public keypk and
a secret keysk. Each permuted vector is then encrypted undersk and the entire
encrypted data set is released to researchers, along withpk. In the scheme we
use, the evaluation key is the same as the public key, but if another scheme with
a separate evaluation key were to be substituted, the evaluation key would be
released to the researcher instead.

�.� Researcher Computation

Once the new data setDú has been published, a researcherR prepares a transcript
T of the steps of some operation they want to perform overDú. Imagine R wants
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to compute the average age of death of patients with a certain disease who are
also taking a certain medication. To compute this value,R uses the— associated
with the disease and the— associated with the medication to include only patients
with both characteristics when summing age of death.
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While machine learning style analysis has been growing more popular among
the research community, computing more simple metrics like counts, correlations,
and linear regressions are still the main methods of conducting computational
analysis. All of these techniques can clearly be implemented using the same Þlter
and sum method above. For example, a simple linear regression between the
variables x

1

and x

2

can be computed as

x

2

= ax
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+ b

Such that a and b can be calculated as
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where n is the number of samples in the dataset. Clearly all of these sum-
mations are easy to compute. Because of the data binning process, a researcher
can also restrict their analysis to certain cohorts, focusing their attention on,
for instance, subsets of the socioeconomic ladder or only more urgent hospital
admittances.

�.� Verification

When D receives the result ofRÕs computation, he runs the veriÞcation algorithm
Verify(T, mú). It is important that the multiplicative depth of the transcript can
be easily extracted; we denote the multiplicative depthd.

Verify(T, mú) takes a transcript T and some encrypted vectorc as input. The
goal of the veriÞcation algorithm is to quickly decide if the steps taken inT

would result in the vector c, returning ! if it is the result vector and # if it is not.
The veriÞcation algorithm is as follows:

! . m = Decrypt(c)
" . Compute „

≠1(m)
' . For each plaintext value a in „

≠1(m) make sure the corresponding veriÞcation
value is fi

d≠1

a, where d can be learned fromT

%. Perform the computation described in T over the random tags in each vector
and make sure it matches the tag of„≠1(v)

( . Return ! if steps ' and %both pass, otherwise return#
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While running the veriÞcation algorithm is constant in the computation time
because the random tags must be computed, it is still much quicker and less
memory intensive than running the computation itself. There is a single value
for k in each vector, so the runtime will be at least 1

l

, where l is length of each
plaintext vector.

If the veriÞcation algorithm returns ! , D strips out all values associated with
the veriÞcation process before the data is put through the di�erential privacy
process. In this way, the permutation, the random tag, andfi all stay secret and
the adversarial researcher gains no advantage once they perform a single valid
computation. If the algorithm returns a #, D must assumeR is attempting to
circumvent the encryption on the data. A cheating researcher is banned from
further use of the system and their results immediately discarded.

�.� Additive Noise

One of the goals of our construction is to make it di�cult for a malicious researcher
to extract information about an individual while performing a legitimate analysis.
Because of the veriÞcation algorithm, we can show that it is di�cult to gain
information by cheating on computation. To ensure that it is di �cult to gain
information from legitimate analysis, we introduce di�erential privacy as the
Þnal step in the process. To this end,D adds noise sampled from a laplacian
distribution with variance equal to the sensitivity of the function computed, where
sensitivity is deÞned in [!# ]. This method has been shown to ensure di�erential
privacy for single queries in previous works [!! ]. There have been no constructions
for imposing di�erential privacy when an adversary can make any number of
queries.

� Security Analysis

It is clear that an adversarial researcher cannot directly access the plaintext data
because the encryption scheme is semantically secure. We must give a heuristic
argument that it is impossible for the system to leak unintended information when
decrypting queries. This model is odd because it allows for limited decryption
queries even though the underlying encryption scheme is not CCA" . The goal of
our security analysis is to determine if it is possible for an adversarial researcher
to gain information about the contents of the dataset besides the answer to the
exact query speciÞed in the transcript. Because it is di�cult to characterize every
kind of attack that a researcher might mount to learn about an individual in the
population, we must ensure that there has been no deviation whatsoever from
the supplied transcript.

In order to formalize our argument about the security of our scheme against
information leakage, we begin by creating a security game. Unlike traditional
games in the cryptographic setting, we do not allow an adversarial researcher to
continue accessing the system once they have been caught attempting to cheat
the system. In modern systems, it is common for the researcher to sign documents
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making them liable for large sums of money if they are noticed attempting to
recover the private information of a patient. Currently, these agreements are
enforced by human log auditors. We borrow this notion and include it in our
security game. The goal of the adversary is to cheat undetected; if their cheating
is detected they are banned from use of the system and heavily Þned.

1 : (x, F ) � Client()

2 : (�, r) � Server(x, F )

3 : y � Verify(�, r)

4 : if y = 1 :

5 : return Decrypt(r)

6 : else :

7 : return �

1 : T � Select(T)

2 : D� � Encrypt(D)

3 : c � A(T, D�)

4 : y � Verify(T, c)

5 : if y = 1 :

6 : return Decrypt(r)

7 : else :

8 : return �

1

Fig. �. Left: Traditional veriÞable computation game. Right: Our updated version of
this game

The traditional game for veriÞable information is between a client, correspond-
ing to the data owner, and a server, corresponding to the researcher. The client
chooses some functionF , usually represented in circuit form, and an input x. The
server is then charged with computingF (x) and proving that the computation
was done honestly. We modify this game slightly to allow an adversary to select
their own function, represented as a transcript, from a family of acceptable
transcripts T. We put some minimal limitations on T, but additional limitation
can be imposed by each individual data owner as needed. Valid transcripts must
have the following properties:

! . The Þrst level of computation must be performed within a single patient
vector and the same computation must be performed on each patient vector.

" . The results of each such computation must be combined in a way such that
the result of T when computed over the dataset is a single value (or a constant
number of values with respect to the size of the dataset).

' . Results of the computation, including the processing of the results vector,
must be independent of the order of vectors in the dataset.

The Þrst property should ensure that a researcher doesnÕt combine—Õs from
one patient with –Õs from another patient. If a researcher somehow learns about
the contents of the record for a single patient and learns its location in the dataset,
it should be impossible for them to leverage that information to compromise
the privacy of another patient. Similarly, we require that all of the results of
the computations on individual are combined into a single result. This prevents
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an adversarial researcher submitting a transcript that simply decrypts patient
vectors directly. Finally, the order of the vectors in the dataset should not impact
the Þnal results. Because the result of a computation over the ciphertext will
yield a result vector instead of a single value, shu�ing the order of the patient
vectors will likely a�ect the individual values in the results vector but will have
no impact on the sum (or product, as appropriate).

It is known to be hard to impose security policies on queries. In order to
impose this speciÞc set of security policies, the researcher is required to state
their transcript in two pieces, ( ! ) the computation to be done on each patient
vector and (" ) the method used to combine the results of each patient vector.
Because there are no limitations on the valid kinds of computations that can be
done within a single patient vector and we require that the method for combining
vector results must be written in a vector independant way, any transcript that
can be written in this form is valid.

We show that with our construction, the probability of creating a transcript T

and ciphertext m

ú that verify but were not generated honestly is bounded by the
probability of guessing the random permutation Õ, speciÞcally the location of the
random tag k in the permuted vector. We assume the adversary has submitted
a transcript-message pair which passes the veriÞcation algorithm, speciÞcally
recomputation of T over the random tags only. One of two things must be
true: ( ! ) the computation was done honestly or (" ) some of the vectors used in
the computation were altered. In the Þrst case, clearly there is no unintended
information leakage; only the answer to the adversaries exact, legitimate query
has been decrypted. If some of the vectors were altered, there are two possibilities.

! . In a given vector j < |v| values of the vector were altered. Given thatÕ is
unknown to the adversary

Pr[Edit j elements] = Pr[Edit k] + Pr[No k edit] ◊ Pr[Well formatted ]

= j

|v| + |v| ≠ j

|v|

Q

ca1 ≠
!|v|

j

"

! |v|
2
j
2

"

R

db < Pr[guessing location ofk]

" . All values in some vector were edited without editing the tag k. In the worst
case, an adversary has all elements of the vector besidesk properly formatted
(ie. the contents of another vector in the dataset). The probability of switching
out the contents of vector with the contents of another without editing the k

is 1

|v| .

Therefore, in all cases, the probability of an adversarial researcher computing
somem without following T properly is bounded by the probability of Þnding
k in the randomly permuted vector. We assume that the length of the vector
is roughly around !### , so 1

|v| ¥ 1

1000

. If this probability of being caught is too
low in the eyes of the data owner, additionalkÕs can be added to the vector.
Each additional k must also be avoided when editing an existing vector, so the
chance of correcting identifying all kÕs in the vector goes down by approximately
a multiplicative factor of 1

1000

for each additional k.
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� Implementation

We implemented the above construction to measure its practical feasibility. To
ensure that a medical dataset could be meaningfully transformed into the proper
format, we processed NY StateÕs public hospital discharge dataset from"#!" ["! ].
The dataset comprises" .( million patient encounters, recording data including
facility information, patient demographics, patient complaint, and medical code
information. While our system can scale to be used with datasets of this size,
discussions with members working in the medical dataset analysis indicated that
most researcher do analysis on smaller datasets of around!## ,### patient vectors.
In order to test the practicality of our system, we chose to test on thisnormal

cohort size.
The NY State dataset contained data in the form of text, integers and real-

valued numbers. We transformed the dataset into the format described in Section
%." . Some Þelds, likelength of stay and total charges, mapped cleanly into the
construction; while there were minor choices to be made regarding the granularity
of the bins and how we wanted to round the decimal values to integers, the
process was very intuitive. Other Þelds, likeadmit day of week and APR risk of

mortality were less obvious. We chose to map each day of the week to a separate
— value. In the original dataset, APR risk of mortality was assigned values like
ÒMinorÓ and ÒMajorÓ. We chose to create a scale such that the lowest rating
was a0 and then each increasing level of risk was one above the previous level.
Additionally we mapped each possible value of this Þeld to its own— value.
Through this process, the initial dataset, which was!## ,### vectors of length
'$ , was transformed into a dataset in which each vector was$!" elements long.

We encrypted large portions of the dataset for testing purposes. We chose not
to encrypt the entire dataset because of space concerns, but we did encrypt(#
rows of the dataset for trial purposes. When stored naively, these(# encrypted
rows take a total of &(" GB, consuming approximately &MBper ciphertext. The
key information and encryption context was stored in a separate Þle which was
!* GB. We can easily cut the size of the stored data by a factor of" using naive
compression and there are other possible optimizations to make the storage
scheme more e�cient.

Encryption was done on consumer grade electronics, speciÞcally a MacBook
Pro with a " .( GHz Intel i & Core processor and!* GB of RAM. The ciphertext
was written out to an external storage device over USB' , so the e�ciency of the
system was impacted severely by disk IO. We chose to set the maximum circuit
depth to !## , which would accommodate most computations. We chose a security
parameter of )# and a prime modulo of !&')$ . Generating the context and secret
key for the scheme took"" .) minutes. Once the context was set up, we wrote it
out to a Þle. To encrypt vectors, we read in the context and secret key, which
took !$ minutes and then each plaintext vector took !# .%seconds to encrypt.
We split the encryption onto two separate threads, the Þrst thread encrypting
– values and the second encrypting— values. In total, the encryption time of
(# vectors was'# .#%hours and encrypting the entire dataset would have taken
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Task Key Setup Key Reading Encryption Sum per Ciphertext Sum Total
Time !! .' m )$.! m )* .#s each "" .*' s each ).(' hr

Fig. �. Timing Results

()% hours. Note that all the times recorded were when operations are performed
linearly and without any optimizations.

We performed a linear regression to test the runtime that a researcher might
encounter. A linear regression is a simplistic metric to compute but is a method
still often used by researchers today. Regressions and averages are basically the
same operations; averages are computed with two sums and linear regressions
are computed with four. Reading in the context and key information takes !( ."
minutes. Processing a single set of ciphertexts take'' .#) seconds, which includes
multiplying an – ciphertext by a — ciphertext and summing it with a ciphertext
that is a running sum of all previous vectors. We performed our computation
without any parallelization, so a single sum of the linear regression took! .$)
hours to compute when done naively. To compute the full linear regression, it
took approximately $.( hours when each sum was computed consecutively.

� Discussion

In order for this system to be useful, there must be a clear economic incentive for
the data owner. SpeciÞcally, it must be beneÞcial to use homomorphic encryption
rather than simply performing analysis on local plaintext and returning results
to the researcher. We can denote the time it take for the data owner to perform
a some computation on behalf of the user ast

computation

.
We consider the various costs associated with doing computation. In addition

to the time to perform the computation itself, there is t

encryption

, the total
computation time required to encrypt a single ciphertext, and t

decryption

, the
time required to decrypt a single ciphertext. Additionally, the time to verify that
a researcher has performed their computation honestly is denotedt

verify

. We
can express the cost of using this system forq queries as

Cost
system

= |D|
¸

2

t

encryption

+ qt

decryption

+
qÿ

i=0

t

i

verify

Whereas the cost of the data owner performing each query on the plaintext
is given as

Cost
naive

=
qÿ

i=0

t

i

computation

The computational time required to impose di�erential privacy on the result
of the analysis is consistent no matter the manner in which the result is computed
so it can be ignored when comparing the costs of the two alternatives. Thus the
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marginal cost of system over simply performing the plaintext in the clear is given
by Marginal Cost = Cost

system

≠ Cost
naive

=

2|D|
¸

t

encryption

+ qt

decryption

+
qÿ

i=0

t

i

computation

(2
¸

≠ 1)

Notice that the encryption time is a one-time cost incurred by the data owner;
no additional encryption processing time is required for each new query posed by
researchers. While the cost is very high, it can be amortized over many queries.
In order for the data owner to be incentivized to use this system, the marginal
cost of the system must be negative, that is

2|D|
¸

t

encryption

+ qt

decryption

+
qÿ

i=0

t

i

computation

(2
¸

≠ 1) < 0

Fig. �. Marginal Cost as a function of computation time and decryption time. Negative
values, red, show where this system has advantages over the naive approach

Intuitively, the computational savings from just doing veriÞcation instead of
the full computation must outweigh the cost of decrypting the result vector. To
give concrete examples for the variables above, we use the same parameters from
Section * . t

decryption

is a constant value no matter the query; as computation
gets more complex the advantage of this system increases. With these parameters,
decrypting a ciphertext will take approximately !) minutes. We note that we
measured decryption time using simple consumer grade electronics and a CPU.
It may be possible to speed this process up using hardware accelerators [) ,$].
In Figure ' we graph the marginal cost per query as a function of the decryption
time and computation time, ignoring the initial encryption time. Red areas of the
surface represent values for which the the system is more e�cient than the naive
strategy. We note that the e�ciency of Fully Homomorphic Encryption Schemes
is likely to increase in the future, whereas the statistical tests researchers want
to perform will only grow in complexity.

Remember that t

computation

denotes the total time that it would take the data
owner to perform analysis, including system overhead like accessing data, which
can become logistically complicated. Using this system for simple operations on
small numbers of records is actually more computationally intensive for the data
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owner; the computation required to decrypt the results vector would be more
than the computation itself. More complex regression methods and statistical
tests are the best candidate operations for which a data owner would gain an
advantage by using this system. SpeciÞcally, functionalities that would take more
than the approximately !) minute decryption time. One concrete example that
Þts into this category is computing maximum likelihood estimators (MLE) for
large numbers of parameters over a fairly large datasets. While computing simple
estimators can be faster than decryption time, computing complicated estimators
or estimators when data independence cannot be assumed is far more expensive.
Without data independence, computing even a single iteration of MLE can be
computationally infeasible on consumer hardware. Extreme examples of these
costly functions can be seen in the Þeld of economics, like [* ]. While simple
functions like linear regression might be the most common tools for medical
researchers today, the Þeld is growing increasingly computationally complex and
being able to outsource the computation of these costly functions to researchers
is a powerful tool.

In Section ! , we proposed six properties that would ensure that our system is
useful, e�cient, and secure. Our system was constructed to speciÞcally address
these properties, and we show that each one is satisÞed.

Authenticity of results. Fully homomorphic encryption guarantees addition
and multiplication operate as though there were not encryption layer present.
Because the researcher is doing the computation on internal systems, they do
not have to be worried about some mistake in computation. We assume that the
data owner is a trusted entity so there is no worry that the decrypted results do
not correspond to the ciphertext delivered by the researcher. Therefore, we can
conclude that all results from this system are authentic.

A rich range of possible analyses. We want to ensure that a researcher can
perform any operations required for their analysis. Other solutions that manage to
be both practical and cost e�cient are lacking this property. The only limitations
imposed on computation in our system are the limitations on valid transcripts.
With access to addition and multiplication, most analysis techniques can be
realized including basic machine learning algorithms.

Minimal computation on the part of the data owner. In order to maintain
a secure system that can be helpful to the medical community, it is impossible
not to incur high costs. The construction presented in this work shares that
cost burden with researchers. For the purposes of this work, we restrict our
interest to researchers with access to large computational infrastructure, like
those with a�liations at universities or members of industrial researcher teams.
This infrastructure currently cannot be leveraged because of di�culties obtaining
data. In our discussions with individuals who work in the industry, they consider it
a reasonable assumption that researchers will have access to large computational
infrastructure. Most of the work we have done in our system can utilize many
cores to speed up computation. No matter the computational requirements, most
of the costs associated with computation are placed on the researcher. The
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veriÞcation time is 1

1000

of the computation itself, so the system o�oads 999

1000

of
the computation to the researcher, minus the time required to decrypt the result
vector.

Privacy for individuals in the dataset. Fully homomorphic encryption allows
for exporting the dataset does not compromise the security of any individual in
the dataset. Fully homomorphic encryption guarantees semantic security, so no
information can leak from ciphertext without access to a decryption oracle. Our
limited decryption oracle only decrypts the results of computation that operates
over the entire dataset, meaning that it can only disclose meaningful information
about individuals if the legitimate query only operates over a very small subset of
the dataset population. When this is the case, the noise added by the di�erential
privacy mechanism makes it impossible to glean any information.

The main concern when sharing data is that an individualÕs privacy is com-
promised and di�erential privacy make that impossible for a single query. While
di�erential privacy makes it impossible for a single query to reveal any informa-
tion about a single individual in the population, it is still theoretically possible
for a determined researcher to learn about an individual because we allow for
multiple queries. Unfortunately, there are no constructions that we are aware of
that allow for both a rich, repeated query space and multiple query di�erential
privacy. The notion of a privacy budget, in which a researcher has a maximum
number of queries or an upper bound on the allowable complexity of queries,
might be used to protect about this kind of attack. We choose to leave it to each
data owner if and how they would like to implement a privacy budget.

Security against adversarial researchers. Because we give researchers access
to a decryption oracle, it must be impossible for an adversarial researcher to
simply decrypt arbitrary ciphertext. Clearly, an insecure decryption oracle would
allow an adversary to trivially learn private information about individuals. The
veriÞable computation scheme embedded into the system guarantees that only
decryption queries that operate over the entire dataset are processed. We have
argued in Section ( that it is very unlikely for an adversarial researcher to
go unnoticed. Indeed, the data owner can tweak the probability of catching a
researcher until they are comfortable with the odds.

In a traditional security model, the probability of catching a cheating adversary
in our system is insu�cient. Importantly, in our system a cheating adversary
is banned from ever using the system again and is heavily Þned. Banning an
adversary prevents them from searchingÕ for the location of k. Charging them
for attempting to cheat means it is impractical to run multiple analyses under
di�erent identities. If there are two kÕs in each vector, the probability of a cheating
researcher of not being caught is 1

10

6 , which may be insu�cient for a theoretical
system but is su�cient for a practical one.

Practicality. Current systems su�er from two major time related weaknesses.
The Þrst is that it takes a long time to actually begin computation. Second, if a
data owner instead chooses to leverage an analysis as a service style solution, it
becomes more di�cult and time consuming for a researcher to access the data.
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While fully homomorphic encryption does make running a single analysis
signiÞcantly slower, it is important to remember that the vast majority of a
researcherÕs time is not spent running their program. Most of the life of a research
project is spent waiting to acquire a dataset or waiting to access a dataset. Our
system requires a one-time cost of formatting and encryption and every future
researcher will be able to use the same version of the dataset without waiting.
Because we construct a system that reduces the wait time required to access a
dataset, increasing the time it would take to actually perform the computation is
acceptable. Recall that our goal was to make the entire process of doing research
quicker, not the computation itself.

Our system also allows a researcher to perform their analysis on their own
schedule. While working on this project, we found a researcher who waited months
to get permission to use a speciÞc dataset and was only able to run analysis from
" am until ) am while the servers storing the data were not in use; these kinds
of limitations make research impossible. In our system, computation can begin
without ever interacting with the data owner.

Conclusion. In this work we have presented a practical system for securely
outsourcing medical dataset analysis. The system ensures that the researcher has
the freedom to compute a rich range of metrics over the database and get results
perturbed by the minimum amount of noise to guarantee di�erential privacy.
Our construction moves the burden of cost onto the beneÞciaries of the analysis
and also shortens the amount of time it takes for them to acquire and analyze a
dataset. Together, these properties provide the alternative the medical research
industry needs to properly incentivize data owners to share their datasets.
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