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Abstract. In this paper we show how Isolated Execution Environments (IEE)
offered by novel commodity hardware such as Intel’s SGX provide a new path to
constructing general secure multiparty computation (MPC) protocols. Our proto-
col is intuitive and elegant: it uses code within an IEE to play the role of a trusted
third party (TTP), and the attestation guarantees of SGX to bootstrap secure com-
munications between participants and the TTP. The load of communications and
computations on participants only depends on the size of each party’s inputs and
outputs and is thus small and independent from the intricacies of the functionality
to be computed. The remaining computational load– essentially that of computing
the functionality – is moved to an untrusted party running an IEE-enabled machine,
an attractive feature for Cloud-based scenarios.
Our rigorous modular security analysis relies on the novel notion of labeled
attested computation which we put forth in this paper. This notion is a convenient
abstraction of the kind of attestation guarantees one can obtain from trusted
hardware in multi-user scenarios.
Finally, we present an extensive experimental evaluation of our solution on SGX-
enabled hardware. Our implementation is open-source and it is functionality
agnostic: it can be used to securely outsource to the Cloud arbitrary off-the-shelf
collaborative software, such as the one employed on financial data applications,
enabling secure collaborative execution over private inputs provided by multiple
parties.

1 Introduction
Secure multiparty computation (MPC) allows a set of mutually distrusting parties to
collaboratively carry out a computation that involves their private inputs. The security
guarantee that parties get are essentially those provided by carrying out the same compu-
tation using a Trusted Third Party (TTP). The computations to be carried out range from
simple functionalities, for example where a party commits to a secret value and later on
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reveals it; or they can be highly complex, for example running sealed bid auctions [9] or
bank customer benchmarking [17]. Most of the existent approaches are software only.
The trust barrier between parties is overcome using cryptographic techniques that permit
computing over encrypted and/or secret-shared data [31,25,18]. Another approach first
studied by Katz [28] formalizes a trusted hardware assumption— where users have
access to tamper-proof tokens on which they can load arbitrary code—that is sufficient
to bootstrap universally composable MPC.

Broadly speaking, this work fits within the same category as that by Katz [13].
However, our starting point is a novel real-world form of trusted hardware that is
currently shipped on commodity PCs: Intel’s Software Guard Extensions [27]. Our goal
is to leverage this hardware to significantly reduce the computational costs of practical
secure computation protocols. The main security capability that such hardware offers are
Isolated Execution Environments (IEE) – a powerful tool for boosting trust in remote
systems under the total or partial control of malicious parties (hijacked boot, corrupt OS,
running malicious software, or simply a dishonest service provider). Specifically, code
loaded in an IEE is executed in isolation from other software present in the system, and
built-in cryptographic attestation mechanisms guarantee the integrity of the code and its
I/O behaviour to a remote user.
PROTOCOL OUTLINE. The functionality outlined above suggests a simple and natural
design for general multiparty computation: load the functionality to be computed into an
IEE (which plays the role of a TTP) and have users provide inputs and receive outputs
via secure channels to the IEE. Attestation ensures the authenticity of the computed
function, inputs and outputs. The resulting protocol is extremely efficient when compared
to existing solutions that do not rely on hardware assumptions. Indeed, the load of
communications and computations on protocol participants is small and independent of
the intricacies of the functionality that is being computed; it depends only on the size of
each party’s inputs and outputs. The remaining computational load — essentially that of
computing the functionality expressed as a transition function in a standard programming
language — is moved to an untrusted party running an IEE-enabled machine. This makes
the protocol attractive for Cloud scenarios. Furthermore, the protocol is non-interactive
in the sense that each user can perform an initial set-up, and then provide its inputs and
receive outputs independently of other protocol participants, which means that it provides
a solution for “secure computation on the web” [24] with standard MPC security.

Due to its obvious simplicity, variations of the overall idea have been proposed in
several practice-oriented works [36,23]. However, currently there is no thorough and
rigorous analysis of the security guarantees provided by this solution in the sense of a
general approach to MPC. The intuitive appeal of the protocol obscures multiple obstacles
in obtaining a formal security proof, including: i. the lack of private channels between
the users and the remote machine; ii. the need to authenticate/agree on a computation
in a setting where communication between parties is inherently asynchronous and only
mediated by the IEE; iii. the need to ensure that the “right” parties are engaged in
the computation; iv. dealing with the interaction between different parts of the code
that coexist within the same IEE, sharing the same memory space, each potentially
corresponding to different users; and v. ensuring that the code running inside an IEE
does not leak sensitive information to untrusted code running outside.
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In this paper we fill this gap through the following contributions: i. a rigorous
specification of the protocol for general MPC computation outlined above; ii. formal
security definitions for the security of the overall protocol and that of its components;5
iii. a modular security analysis of our protocol that relies on a novel notion of labelled
attested computation; and iv. an open-source implementation of our protocol and a
detailed experimental analysis in SGX-enabled hardware. We give an overview of our
results next.
LABELED ATTESTED COMPUTATION. Our protocol relies on ideal functionalities viewed
as programs written as transition functions in a programming language compatible with
the IEE-enabled machine. We instrument these programs to run inside an IEE and add
bootstrapping code that permits protocol participants to establish independent secure
channels with the functionality, so that they can provide inputs and receive outputs.
The crux of the protocol is a means to provide attestation guarantees which ensures
that parties are involved in the “right" run of the protocol (i.e. with the right parties all
interacting with the same IEE). We take inspiration from the recent work of Barbosa
et al.[4] who provide a formalization for the notion of attested computation that can
convince a party that its local view of the interaction with a remote IEE matches what
actually occurred remotely. This guarantee is close to the one that we need, but it is
unfortunately insufficient. The problem is that attested computation a la [4] is concerned
with the interaction between a single party and an IEE, and it is non-trivial to extend
these guarantees to the interaction of multiple parties with the same IEE when the goal
is to reason about concurrent asynchronous interactions.

To overcome these problem, we introduce the notion of labelled attested computation
(LAC), a powerful and clean generalization of the attested computation notion in [4].
In a nutshell, this notion assumes that (parts of) the code loaded in an IEE is marked
with labels pertaining to users, and that individual users can get attestation guarantees
for those parts of the code that corresponds to specific labels. The gain is that users can
now be oblivious of other user’s interactions with the IEE, which leads to significantly
more simple and efficient protocols. Nonetheless, the user can still derive attestation
guarantees about the overall execution of the system, since LAC binds each users’ local
view to the same code running within the IEE, and one can use standard cryptographic
techniques to leverage this binding in order to obtain indirect attestation guarantees as to
the honest executions of the interactions with other users.

We provide syntax and a formal security model for LAC and show how this prim-
itive can be used to deploy arbitrary (labelled) programs to remote IEEs with flexible
attestation guarantees. Our provably secure LAC protocol relies on hardware equipped
with SGX-like IEEs. Our construction of the MPC protocol then builds on LACs in
a modular way. First, we show how to use labelled attested computation schemes6 to
bootstrap an arbitrary number of independent secure channels between local users and

5 Since our emphasis is on efficiency and analysing SGX-based protocols used in practice, we
do not consider Universal Composability, but rather a simulation-based security model akin to
those used for other practical secure computation protocols, e.g. [6].

6 We use schemes which satisfy the additional notion of minimal leakage which ensures that the
outsourced instrumented program P ⇤ reveals no information about its internal state beyond
what the normal input/output behavior of the original program P would reveal.
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an IEE with joint attestation guarantees. We formalize this result as an utility theorem.
The security of the overall MPC protocol which uses these channels for communication
with functionality code inside an IEE is then built on this utility theorem.
IMPLEMENTATION AND EXPERIMENTAL VALIDATION. We conclude the paper with
an experimental evaluation of our protocol via a detailed comparison of our solution to
state-of-the-art multiparty computation. The experimental results confirm the theoretical
performance advantages that we have highlighted above in comparison to non hardware-
based solutions. Our implementation of a generic MPC protocol —sgx-mpc— relies
on the NaCl7 cryptographic library [8] and inherits its careful approach to dealing with
timing side-channels. We discuss side-channels in SGX-like systems and explain how
our constant-time code thwarts all leaks based on control-flow or memory access patterns
that depend on secret data.

Our implementation is functionality agnostic and can be used to outsource to the
Cloud arbitrary off-the-shelf collaborative software, enabling multiple parties to jointly
execute complex interactive computations without revealing their own inputs. Taking
the financial sector as an example, our implementation permits carrying out financial
benchmarking [17] using off-the-shelf software, rather than requiring the conversion of
the underlying computation into circuit form, as is the case in state-of-the-art secure
multiparty computation protocols. One should of course mention that, in order to meet
the level of side-channel attack resilience of sgx-mpc, the code that is outsourced to the
Cloud should itself be implemented according to the constant-time coding policy. This,
however, is a software engineering issue that is outside of the scope of this paper.
RELATED WORK. A relevant line of research leverages trusted hardware to bootstrap
entire platforms for secure software execution (e.g. Flicker [32], Trusted Virtual Do-
mains [14], Haven [5]). These are large systems that are currently outside the scope of
provable-security techniques. Smaller protocols which solve specific problems are more
susceptible to rigorous analysis. Examples of these are secure disk encryption [33], one-
time password authentication [26] outsourced Map-Reduce computations [36], Secure
Virtual Disk Images [22], two-party computation [23], secure embedded devices [34,29].
Although some of these protocols (e.g., those of Hoekstra et al. [26] and Gupta et al [23])
come only with intuition regarding their security, others—most notably those by Schuster
et. al [36]—come with a proof of security. The use of attestation in those protocols is
akin to our use of attestation in our general MPC protocol. Provable security of realistic
protocols that use trusted hardware-based protocols based on the Trusted Platform Mod-
ule (TPM) have been considered in [11,37,10,21,20]. The weaker capabilities offered by
the TPM makes them more suitable for static attestation than for a dynamic setting like
the one we consider in this paper.

In recent independent work Pass, Shi and Tramer [35] formalize attestation guaran-
tees offered by trusted hardware in the Universal Composability setting, and consider the
feasibility of achieving UC-secure MPC from such assumptions. Interestingly, they show
that in the setting that they consider (UC with a Global Setup (GUC) [12]) multiparty
computation is impossible to achieve without additional assumptions, unless all parties
have access to trusted hardware. They bypass this impossibility result by assuming
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that all parties have access to both trusted hardware as well some additional set-up.
The resulting protocols are more intricate and less efficient than ours, so our results
can be interpreted as a practice-oriented approach to the security of the most natural
MPC protocol that relies on SGX, which trades composability for efficiency while still
preserving strong privacy guarantees for the inputs to the computation. Furthermore,
contrary to their approach, performing parallel executions of our protocol also entails
several initializations, thus increasing performance overhead accordingly.

2 IEEs, Programs, and Machines
The models that we develop in this paper rely on the abstraction for IEEs introduced
in [4]. Here we recall the key features of that model. A more in depth description of
these formalisms is provided in the full version [3].

An IEE is viewed as an idealised machine running some fixed program P and
which exposes an interface through which one can pass inputs and receive outputs
to/from P . The I/O behaviour of a process running in an IEE is determined by the
program it is running, and the inputs it receives. The interface models the strict isolation
between processes running in different IEEs and formalizes that the only information
that is revealed about a program running within an IEE is contained in its input-output
behaviour.
PROGRAMS. We extend the model for programs from [4] to the setting where in-
puts/outputs are labeled: programs are transition functions which take a current state
st and a label-input pair (l, i), and produce a new output o and an updated state. We
write o  P [st](l, i) for each such action and refer to it as an activation. Through-
out the paper we restrict our attention to programs (even if they are adversarially
created) for which the transition function is guaranteed to run in polynomial-time.
Programs are assumed to be deterministic modulo of system calls; in particular we
assume a system can call rand for providing programs with fresh randomness. Ad-
ditionally, outputs are assumed to include a flag finished that indicating if the transi-
tion function will accept further input. We extend our notation to account for prob-
abilistic programs that invoke the rand system call. We write o  P [st; r](l, i) for
the activation of P which when invoked on labeled input (l, i) (with internal state
st and random coins r) produced output o. We write a sequence of activations as
(o1, . . . , on)  P [st; r](l1, i1, . . . , ln, in) and denote by Trace

P [st;r](l1, i1, . . . , ln, in)
the corresponding input/output trace (l1, i1, o1, . . . , ln, in, on). For a trace T , we write
filter[L](T ) for the projection of the trace that retains only I/O pairs that correspond
to labels in L. We use filter[l] when L is a singleton. We also extend the basic notion
of program composition in [4] to consider label-based parallel and sequential program
composition. Intuitively, when two labelled programs are composed, the set of labels
of the composed program is enriched to encode the precise sub-program that should be
activated and the label on which it should be activated.
MACHINES. As in [4] we model machines via a simple external interface, which we
see as both the functionality that higher-level cryptographic schemes can rely on when
using the machine, and the adversarial interface that will be the basis of our attack
models. This interface can be thought of as an abstraction of Intel’s SGX [27]. The
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interface consists of three calls: 1. Init(1�) initialises the machine and outputs the global
parameters prms. 2. Load(P ) loads the program P in a fresh IEE and returns its handle
hdl 3. Run(hdl, l, i) passes the label-input pair (l, i) to the IEE with handle hdl. We
define the I/O trace TraceM(hdl) of a process hdl running in a machine M as the tuple
(l1, i1, o1, . . . , ln, in, on) that includes the entire sequence of n inputs/outputs resulting
from all invocations of Run on hdl; ProgramM(hdl) is the code (program) running under
handle hdl; CoinsM(hdl) represents the coins given to the program by the rand system
call; and StateM(hdl) is the internal state of the program. Finally, we will write AM to
indicate that algorithm A has access to machine M.

3 Labelled Attested Computation

We now formalize a cryptographic primitive that generalizes the notion of Attested Com-
putation proposed in [4], called Labelled Attested Computation. The main difference to
the original proposal is that, rather than fixing a particular form of program composition
for attestation, Labelled Attested Computation is agnostic of the program’s internal
structure; on the other hand, it permits controlling data flows and attestation guarantees
via the label information included in program inputs.
SYNTAX. A Labelled Attested Computation (LAC) scheme is defined by the following
algorithms:

– Compile(prms, P, L⇤) is the deterministic program compilation algorithm. On input
global parameters for some machine M, program P and an attested label set L⇤, it
outputs program P

⇤. This algorithm is run locally. P ⇤ is the code to be run as an
isolated process in the remote machine, whereas L

⇤ defines which labelled inputs
should be subject to attestation guarantees.

– Attest(prms, hdl, l, i) is the stateless attestation algorithm. On input global parameters
for M, a process handle hdl and label-input pair (l, i), it uses the interface of M
to obtain attested output o⇤. This algorithm is run remotely, but in an unprotected
environment: it is responsible for interacting with the isolated process running P

⇤,
providing it with inputs and recovering the attested outputs that should be returned to
the local machine.

– Verify(prms, l, i, o⇤, st) is the public (stateful) output verification algorithm. On input
global parameters for M, a label l, an input i, an attested output o⇤ and some state
st it produces an output value o and an updated state, or the failure symbol ?. This
failure symbol is encoded so as to be distinguishable from a valid output of a program,
resulting from a successful verification. This algorithm is run locally on claimed
outputs from the Attest algorithm. The initial value of the verification state is set to be
(prms, P, L⇤), the same inputs provided to Compile.

Intuitively, a LAC scheme is correct if, for any given program P and attested label
set L⇤, assuming an honest execution of all components in the scheme, both locally
and remotely, the local user is able to accurately reconstruct a partial view of the I/O
sequence that took place in the remote environment, for an arbitrary set of labels L. A
formal definition of correctness is provided in the full version [3].
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Game AttLAC,A(1�):

prms $ M.Init(1�); (P,L

⇤
, l, n, stA) $ A1(prms); P⇤  Compile(prms, P, L

⇤); stV  (prms, P, L

⇤)
For k 2 [1..n] :

(ik, o
⇤
k, stA) $ AM

2 (stA); (ok, stV ) Verify(prms, l, ik, o
⇤
k, stV )

If ok =? Return F
T  (l, i1, o1, . . . , l, in, on)
For hdl⇤ s.t. ProgramM(hdl⇤) = P

⇤

(l01, i
0
1, o

0
1, . . . , l

0
m, i

0
m, o

0
m) TraceMR

(hdl⇤); T 0  filter[l](TraceP [st;CoinsM(hdl⇤)](l
0
1, i

0
1, . . . , l

0
m, i

0
m))

If T v T

0 Return F
Return T

Fig. 1. Game defining the security of LAC.

SECURITY. Security of labelled attested computation imposes that an adversary with
control of the remote machine cannot convince the local user that some arbitrary remote
(partial) execution of a program P has occurred, when it has not. It says nothing about
the parts of the execution trace that are hidden from the client or are not in the attested
label set L⇤. Formally, we allow the adversary to freely interact with the remote machine,
whilst providing a sequence of (potentially forged) attested outputs for a specific label
l 2 L

⇤. The adversary wins if the local user reconstructs an execution trace without
aborting (i.e., all attested outputs must be accepted by the verification algorithm) and one
of two conditions occur: i. there does not exist a remote process hdl⇤ running a compiled
version of P where a consistent set of inputs was provided for label l; or ii. the outputs
recovered by the local user for those inputs are not consistent with the semantics of P .

Technically, these conditions are checked in the definition by retrieving the full
sequence of label-input pairs and random coins passed to all compiled copies of P
running in the remote machine and running P on the same inputs to obtain the expected
outputs. One then checks that for at least one of these executions, when the traces are
restricted to special label l, that the expected trace matches the locally recovered trace
via Verify. Since the adversary is free to interact with the remote machine as it pleases,
we cannot hope to prevent it from providing arbitrary inputs to the remote program
at arbitrary points in time, while refusing to deliver the resulting (possibly attested)
outputs to the local user. This justifies the winning condition referring to a prefix of
the execution in the remote machine, rather than imposing trace equality. Indeed, the
definition’s essence is to impose that, if the adversary delivers attested outputs for a
particular label in the attested label set, then the subtrace of verified outputs for that label
will be an exact prefix of the projection of the remote trace for that label.

We note that a higher-level protocol relying on LAC can fully control the semantics
of labels, as these depend on the semantics of the compiled program. In particular,
adopting the specific forms of parallel and sequential composition presented in Section 2,
it is possible to use labels to get the attested execution of a sub-program that is fully
isolated from other programs that it is composed with. This provides a much higher
degree of flexibility than that offered by the original notion of Attested Computation.

Definition 1 (Security). A labelled attested computation scheme is secure if, for all ppt
adversaries A, the probability that experiment in Fig. 1 returns T is negligible.

The adversary loses the game if there exists at least one remote process that matches
the locally reconstructed trace. This should be interpreted as the guarantee that IEE
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Game Leak-RealLAC,A(1�):
PrgList [ ]
prms $ M.Init(1�)
b $ AO(prms)
Return b

Oracle Load(P ):
Return M.Load(P )

Oracle Compile(P,L):
P

⇤  Compile(prms, P, L)
PrgList P

⇤ : PrgList
Return P

⇤

Oracle Run(hdl, l, i):
Return M.Run(hdl, l, i)

Game Leak-IdealLAC,A,S(1�):
PrgList [ ]; List [ ]
hdl 0
(prms, stS) $ S1(1

�)
b $ AO(prms)
Return b

Oracle Load(P⇤):
hdl hdl + 1
List[hdl] (P⇤

, ✏)
Return hdl

Oracle Compile(P,L):
P

⇤  Compile(prms, P, L)
PrgList (P⇤

, L, P ) : PrgList
Return P

⇤

Oracle Run(hdl, l, i):
(P⇤

, st) List[hdl]
If (P⇤

, L, P ) 2 PrgList :
o $ P [st](l, i)
(o⇤, stS) $ S2(hdl, P, L, l, i, o, stS)

Else:
(o⇤, stS) $ S3(hdl, P

⇤
, l, i, st, stS)

List[hdl] (P⇤
, st)

Return o

⇤

Fig. 2. Games defining minimum leakage of LAC.

resources are indeed being allocated in a specific remote machine to run at least one
instance of the remote program (note that if the program is deterministic, many instances
could exist with exactly the same I/O behaviour, which is not seen as a legitimate attack).
Furthermore, our definition imposes that the compiled program uses essentially the
same randomness as the source program (except of course for randomness that the
security module internally uses to provide its cryptographic functionality), as otherwise
it is easy for the adversary to make the (idealized) local trace diverge from the remote.
This is a consequence of our modelling approach, but it does not limit the applicability
of our primitive: it simply spells out that the transformation performed on the code
for attestation will typically consist of an instrumentation of the code by applying
cryptographic processing to the inputs and outputs it receives.
MINIMAL LEAKAGE. The above discussion shows that a LAC scheme guarantees that
the I/O behaviour of the program in the remote machine includes at least the information
required to reconstruct an hypothetical local execution of the source program. Next,
we require that a compiled program does not reveal any information beyond what the
original program would reveal. The following definition imposes that nothing from the
internal state of the source programs (in addition to what is public, i.e., the code and I/O
sequence) is leaked in the trace of the compiled program.

Definition 2 (Minimal leakage). A labelled attested computation scheme LAC ensures
security with minimal leakage if it is secure according to Definition 1 and there exists a
ppt simulator S that, for every adversary A, the following distributions are identical:

{ Leak-RealLAC,A(1�) } ⇡ { Leak-IdealLAC,A,S(1
�) }

where games Leak-RealLAC,A and Leak-IdealLAC,A,S are shown in Fig. 2.

8



Intuitively, this means that one can construct a perfect simulation of the remote trace
by simply appending cryptographic material to the local trace. This property is important
when claiming that the security of a cryptographic primitive is preserved when it is run
within an attested computation scheme.

4 LAC from SGX-like systems
Our labelled attested computation protocol relies on the capabilities offered by the
security module of Secure Guard Extensions (SGX) architecture proposed by Intel [2]
(i.e. MACs for authenticated communication between IEEs, and digital signatures for
inter-platform attestation of executions). Our security module formalization is the same
as the one adopted in [4].
SECURITY MODULE. The security module relies on a signature scheme and a MAC
scheme,and operates as follows:

– On initialization, the security module generates a key pair (pk, sk) and a symmetric
key key.It also creates a special process running code S⇤ in an IEE with handle 0. The
security module then securely stores the key material, and outputs the public key.

– The operation of IEE with handle 0 is different from all other IEEs in the machine.
Program S

⇤ will permanently reside in this IEE, and it will be the only one with direct
access to both sk and key. The code of S⇤ is dedicated to transforming messages
authenticated with key into messages signed with sk. On activation, it expects an input
(m, t). It obtains key from the security module and verifies the tag. If the previous
operation was successful, it obtains sk from the security module, signs the message
and outputs the signature.

– The security module exposes a single system call mac(m) to code running in all
other IEEs. On such a request from a process running program P , the security module
returns a MAC tag t computed using key over both the code of P and the input message
m.

LABELLED ATTESTED COMPUTATION SCHEME. We now define a LAC scheme that
relies on a remote machine supporting such a security module. Basic replay protection
using a sequence number does not suffice to bind a remote process to a subtrace, since
the adversary could then run multiple copies of the same process and mix and match
outputs from various traces. This is similar to the reasoning in [4]. However, in this paper
we are interested in validating traces for specific attested labels, independently from
each other, rather than the full remote trace. Our LAC scheme works as follows:

– Compile(prms, P, L) generates a new program P

⇤ and outputs it. Program P

⇤ is
instrumented as follows:
• in addition to the internal state st of P , it maintains a list ios

l

of all the I/O pairs it
has previously received and computed for each label l 2 L.

• On input (l, i), P ⇤ computes o $ P [st
P

](l, i) and verifies if l 2 L. If this is not
the case, then P

⇤ simply outputs non-attested output o.
• Otherwise, it updates the list ios by appending (l, i, o), computes the subset of ios

for label l : ios
l

 filter[l](ios) and requests from the security module a MAC of
for that list. Due to the operation of the security module, this will correspond to a
tag t on the tuple (P ⇤, ios

l

).
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• It finally outputs (o, t, P ⇤, ios
l

). We note that we include (P ⇤, ios
l

) explicitly in
the outputs of P ⇤ for clarity of presentation only. This value would be kept in an
insecure environment by a stateful Attest program.

– Attest(prms, hdl, l, i) invokes M.Run(hdl, (l, i)) using the handle and input value it
has received. Attest then checks is the produced output o is to be attested and if so
transforms the tag into a signature � using the IEE with handle 0 and outputs (o0,�).
Otherwise it simply outputs o.

– Verify(prms, l, i, o⇤, st) is the stateful verification algorithm. Initially st = (prms, P, L⇤),
on first activation Verify computes and stores P

⇤ and initialises an empty list ios
of input-output pairs. Verify returns o

⇤ if l 62 L. Otherwise, it first parses o

⇤ into
(o,�), appends (l, i, o) to ios and verifies the digital signature � using prms and
(P ⇤, filter[l](ios)). If parsing or verification fails, Verify outputs ?. If not, then Verify
outputs o.

Correctness of our LAC scheme is clear – a detailed analysis is in the full version [3].

Theorem 1 (LAC scheme security). The LAC scheme presented above provides secure
attestation if the underlying MAC scheme ⇧ and signature scheme ⌃ are existentially
unforgeable. Furthermore, it unconditionally ensures minimum leakage.

The proof of this theorem generalizes that of basic attestation schemes in [4] and can
be found in the full version [3]. All attested outputs are bound to a partial execution
trace that contains the entire I/O sequence associated with the corresponding attested
label, so all messages accepted by Verify must exist as a prefix for a remote trace of
some instance of P ⇤. The adversary can only cause an inconsistency in T v T

0 if the
signature verification performed by Verify accepts a message of label l 2 L

⇤ that was
never authenticated by an IEE running P

⇤. However, in this case the adversary either
breaks the MAC scheme (and dishonestly executing Attest), or breaks the signature
(directly forging attested outputs).

5 Secure computation with IEEs
FUNCTIONALITIES. We want to securely execute a functionality F defined by a four-
tuple (n,F, Lin, Lout), where F is a deterministic stateful transition function that takes
inputs of the form (id, i). Here, id is a party identifier, which we assume to be an integer
in the range [1..n], and n is the total number of participating parties. On each transition,
F produces an output that is intended for party id, as well as an updated state. We
associate to F two leakage functions Lin(k, i, st) and Lout(k, o, st) which define the
public leakage that can be revealed by a protocol about a given input i or output o
for party k, respectively; for the sake of generality, both functions may depend on the
internal state st of the functionality, although this is not the case in the examples we
consider in this paper. Arbitrary reactive functionalities formalized in the Universal
Composability framework can be easily recast as a transition function such as this. The
upside of our approach is that one obtains a precise code-based definition of what the
functionality should do (this is central to our work since these descriptions give rise to
concrete programs); the downside is that the code-based definitions may be less clear to
a human reader, as one cannot ignore the tedious book-keeping parts of the functionality.
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EXECUTION MODEL. We assume the existence of a machine M allowing for the usage
of isolated execution environments, as defined in Section 2. In secure computation terms,
this machine should not be seen as an ideal functionality that enables some hybrid
model of computation, but rather an additional party that comes with a specific setup
assumption, a fixed internal operation, and which cannot be corrupted. Importantly, all
interactions with M and all the code that is run in M but outside IEEs is considered to
be adversarially controlled.
SYNTAX. A protocol ⇡ for functionality F is a seven-tuple of algorithms as follows:

– Setup – This is the party local set-up algorithm. Given the security parameter, the
public parameters prms for machine M and the party’s identifier id, it returns the
party’s initial state st (incluing its secret key material) and its public information pub.

– Compile – This is the (deterministic) code generation algorithm. Given the description
of a functionality F, and public parameters (prms,Pub) for both the remote machine
and the entire set of public parameters for the participating parties, it generates the
instrumented program that will run inside an IEE.

– Remote – This is the untrusted code that will be run in M and which ensures the
correctness of the protocol by controlling its scheduling and input collection order. It
has oracle access to M and is in charge of collecting inputs and delivering outputs. Its
initial state describes the order in which inputs of different parties should be provided
to the functionality.

– Init – This is the party local protocol initialization algorithm. Given the party’s state
st produced by Setup and the public information of all participants Pub it outputs an
uptated state st. We note that a party can choose to engage in a protocol by checking
if the public parameters of all parties are correct and assigned to roles in the protocol
that match the corresponding identities.

– AddInput – This is the party local input providing algorithm. Given the party’s current
state st and an input in, it outputs an uptated state st.

– Process – This is the party local message processing algorithm. Given its internal state
st, and an input message m, it runs the next protocol stage, updates the internal state
and returns output message m0.

– Output – This is the party local output retrieval algorithm. Given internal state st, it
returns the current output o.

Intuitively such a protocol is correct if it can support any execution schedule whilst
evaluating the functionality correctly. A precise definition is provided in the full ver-
sion [3].
SECURITY. As is customary in secure computation models, we take the ideal world versus
real world approach to define security of a protocol. Our security model is presented
in Figure 3, and is described as follows. In the real world, the adversary interacts with
an IEE-enabled machine M under adversarial control and oracles SetInput, GetOutput
and Send providing it with the locally run part of the protocol. In the ideal world, the
adversary is presented with 1. a simulator S emulating the remote machine, the setup
phase, and the Send oracle 2. idealised oracles SetInput, GetOutput. The idealised
oracles only do book-keeping of which input should be transmitted next and which
output should be retrieved next for each honest party. S gets given oracle access to a
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Game RealF,⇡,A,M(1�):
(n, F, Lin, Lout) F
prms $ M.Init(1�)
(stA, k) $ A(prms)
For id 2 [1..k]:
(stid, pubid) $ Setup(prms, id)

Pub (pub1, ..., pubk)
For id 2 [k + 1..n]:
(stA, pubid) $ A(stA, id,Pub)

Pub (pub1, ..., pubn)
For id 2 [1..k]:
stid $ Init(stid,Pub)

b $ AO(stA)

Oracle Send(id,m):
If id 62 [1..k] Return?
(stid,m

0) $ Process(stid,m)
Return m

0

Oracle SetInput(in, id):
If id 62 [1..k] Return?
stid $ AddInput(in, stid)

Oracle Load(P ):
Return M.Load(P )

Oracle Run(hdl, l, x):
Return M.Run(hdl, l, x)

Oracle GetOutput(id):
If id 62 [1..k] Return?
Return Output(stid)

Game IdealF,⇡,A,S(1�):
(n, F, Lin, Lout) F
stF  ✏

(st, prms) $ S(1�)
(stA, k) $ A(prms)
For id 2 [1..k]:
(st, pubid) $ S(st, id)
ListInid  [ ]
ListOutid  [ ]

Pub (pub1, ..., pubk)
For id 2 [k + 1..n]:
(stA, pubid) $ A(stA, id,Pub)

Pub (pub1, ..., pubn)
For id 2 [1..k]:
st $ S(st, id,Pub)

b $ AO(stA)

Oracle Fun(id, in):
If id 2 [1..k]:
(in1, . . . , ink) ListInid
ListInid  (in1, . . . , ink-1)
out F[stF](id, ink)
ListOutid  out : ListInid
Return Lout(out, id, stF)

Else
out F[stF](id, in)
Return out

Oracle SetInput(in, id):
If i 62 [1..k] Return?
` Lin(in, id, stF)
st $ S(st, `, id)
ListInid  in : ListInid

Oracle Send(id,m):
(st, out) $ SFun(st, id,m)
Return out

Oracle Load(P ):
(st, out) $ S(st, P )
Return out

Oracle Run(hdl, l, x):
(st, out) $ SFun(st, hdl, l, x)
Return out

Oracle GetOutput(id):
If id 62 [1..k] Return?
i $ S(st, id)
(out1, . . . , outk) ListOutid
Return out1 || . . . || outi

Fig. 3. Real and Ideal security games.

functionality evaluation oracle Fun that consumes the next input of a party (defined in
SetInput if the party is honest, passed as input otherwise) and sets the next output for
this party, returning the leakage of the input and output if the party is honest, and the full
output otherwise. A protocol is deemed secure if there exists a ppt simulator such that
no ppt adersary can distinguish the two worlds.

Definition 3. We say ⇡ is secure for F if, for any ppt adversary A, there exists a ppt
simulator S such that the following definition of advantage is a negligible function in
the security parameter.

|Pr[RealF,⇡,A,M(1�)) b = 1]� Pr[IdealF,⇡,A,S(1�)) b = 1] |

Succinctly, our model is inspired in the UC framework, and can be derived from it
when natural restrictions are imposed: PKI, static corruptions, and a distinguished non-
corruptible party modeling an SGX-enabled machine.8 A security proof for a protocol
in our model can be interpreted as translation of any attack against the protocol in the
real world, as an attack against the ideal functionality in the ideal world. The simulator
performs this translation by presenting an execution environment to the adversary that
is consistent with what it is expecting in the real world. It does this by simulating the

8 This particular choice in our model has implications for the composability properties of our
results, as discussed in the related work section.
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operations of the Load, Run and Send oracles, which represent the operation of honest
parties in the protocol. While the adversary is able to provide the inputs and read the
outputs for honest parties directly from the functionality, the simulator is only able obtain
partial leakage about this values via the Lin and Lout functions. Conversely, it can obtain
the functionality outputs for corrupt parties via the Fun oracle and, furthermore, it is also
able to control the rate and order in which all inputs are provided to the functionality.
Were this not the case, the adversary would be able to distinguish the two worlds by
manipulating scheduling in a way the simulator could not possibly match.

6 A New MPC Protocol from SGX

Program BoxhF,⇤i[st](i⇤, l):
(n, F, Lin, Lout) F
id l

If id /2 [1..n] : Return?
If st.seqid = ✏ : st.seqid  0
i ⇤.Dec(st.keyid,m)
If m 6= (in, st.seqid) : Return?
o F [st.stF](id, in)
st.seqid  st.seqid + 1
c $ ⇤.Enc(st.keyid, (seq, o))
st.seqid  st.seqid + 1
Return c

Fig. 4. Boxing using Authenticated
Encryption

In this section we describe our secure multiparty
computation protocol based on LAC that works for
any functionality. The protocol starts by running
bootstrap code in an isolated execution environment
in the remote machine; the code exchanges keys
with each of the participants in the protocol. These
key exchange programs are composed in parallel, as
seen in Section 2. We reuse the notion of AttKE (key
exchange for attested computation) from [4] which
provides the right notion of key exchange security in
this context. Once this bootstrap stage is concluded,
the code of the functionality starts executing. The
functionality uses the secure channels established
before to ensure that the inputs and outputs are pri-
vate and authenticated. The security of this protocol relies on a utility theorem similar to
that of [4] for the use of key exchange in the context of attestation.

Theorem 2 (Local AttKE utility). If the AttKE is correct and secure, and the LAC
protocol is correct, secure and ensures minimal leakage, then for all ppt adversaries in
the labelled utility experiment: the probability that the adversary violates the AttKE two-
sided entity authentication is negligible; and the key secrecy advantage 2 · Pr[guess]� 1
is negligible.

This theorem shows that, under the specific program composition pattern that we require
for our MPC protocol, which guarantees AttKE isolation from other programs, each
party obtains a secret key that is indistinguishable from a random string. The detailed
labelled utility experiment and the theorem proof can be found in the full version [3]. It
follows that the key can be used to construct a secure channel that connects it to code
emulating the functionality within an IEE.
BOXING USING AUTHENTICATED ENCRYPTION. As explained above, after the boot-
strapping stage of our protocol, we run the ideal functionality within an isolated execution
environment. We implement this part of the execution using the boxing construction
shown in Figure 4. The name comes by analogy with placing the functionality within a
box, which parties can access via secure channels. The labelled program BoxhF ,⇤i is
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parametrized by a functionality F for n parties and a secure authenticated encryption
encryption scheme ⇤. Its initial state is assumed to contain n symmetric keys compatible
with ⇤, denoted sk1 to sk

n

(one for each participating party) and the empty initial state
for the functionality stF. The Box expects encrypted inputs i⇤ under a label l identifying
the party providing the input. These are then decrypted using the respective key sk

l

and
provided to F . The value returned by the functionality is encrypted using the same sk

l

and is then returned. To avoid replays of encrypted messages, we keep one sequence
number seqid per communicating party id.
THE PROTOCOL. Building on top of a LAC scheme, an AttKE scheme and our Box
construction we define a general secure multiparty computation protocol that works for
any (possibly reactive) functionality F. The core of the protocol is the execution of an
AttKE for each participant in parallel, followed by the execution of the functionality F
on the remote machine, under a secure channel with each participant as specified in the
Box construct. More precisely:

– Setup derives the code for a remote key exchange program RemKE using the AttKE
setup procedure. This code (which intuitively includes cryptographic public key
material) is set to be the public information for this party. The algorithm also stores
various parameters in the local state for future usage.

– Compile uses the LAC compilation algorithm on a program that results from the
parallel composition of all the remote key exchange programs for all parties, which is
then sequentially composed with the boxed functionality.

– Init locally reconstructs the program that is intended for remote execution, as this is
needed for attestation verification. The set of labels that define the locally recovered
trace is set to the pair ((p, (id, ✏)), (q, id)), corresponding to the parts of the remote
trace that are relevant for this party, namely its key exchange and its inputs/outputs.

– Process is split into two stages. In the first stage it uses LAC with attested labels
of the form (p, (id, ✏)) to execute AttKE protocol and establish a secure channel
with the remote program. In the second stage, it uses non-attested labels of the form
(q, id), and it provides inputs to the remote functionality (on request) and recovers the
corresponding outputs when they are delivered.

– Output reads the output in the state of the participant and returns it.
– AddInput adds an input to the list of inputs to be transmitted by the participant.

Pseudo code of the protocol as well as formal details of the (untrusted) scheduling
algorithm can be found in the full version [3].

For proving security, we restrict the functionalities we consider to a particular leakage
function: size of inputs/outputs. We say that a functionality (n,F, Lin, Lout) leaks size
if it is such that Lin and Lout return the length of the inputs/outputs (Lin(k, x, st) =
Lout(k, x, st) = |x| for every k, x, st).

Theorem 3. If LAC is a correct and secure LAC scheme, AttKE is a secure AttKE
scheme and ⇤ a secure authenticated encryption scheme, then the protocol described in
this Section is correct and secure for any functionality that leaks size.

PROOF SKETCH. We build the required simulator S as follows. For dishonest parties,
the simulator executes the protocol normally while for the honest parties instead of
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encrypting the inputs/outputs the simulator encrypts dummy messages of the correct
length (obtained through the leakage function) under freshly generated keys.

We sketch a proof of indistinguishability between the real and ideal worlds. The full
proof can be found in the full version [3]. The proof consists of 3 hops, the first is a
hybrid argument over the honest parties. In this hybrid argument one gradually replaces
the key derived by each honest party by a random one. In each step, the utility theorem is
used to show that this change cannot be noticed by the adversary. In the second hop, we
replace the encrypted inputs/outputs for honest parties by encrypted dummy payloads of
the correct length. This hop is correct by the indistinguishability of encrypted ciphertexts.
After this game hop, the resulting game is identical until bad to the ideal world, where
the bad event corresponds to the simulator aborting due to an inconsistent message being
accepted as the next undelivered input or output. Due to the use of sequence numbers,
this bad event can be reduced to the authenticity of the encryption scheme.

7 Implementation

We provide an implementation of our protocol sgx-mpc-nacl relying on NaCl for the
cryptographic library and Intel SGX for the IEEs. We use elliptic curves for both the
key exchange (Diffie-Hellman) and signatures, and a combination of the Salsa20 and
Poly1305 encryption and authentication schemes [8] for authenticated encryption. Our
implementation relies on Intel’s Software Development Kit for dealing with the SGX
low-level operations. These include loading code into an IEE (our Load abstraction),
calling a function within the IEE (our Run abstraction), and constructing an attested
message (first getting a MAC’ed message within the IEE, and using the quoting enclave
to convert it into a signature). It employs the LAC scheme proposed here, and include
wrappers that match our abstractions of signatures and authenticated encryption. These
are then used to construct the bootstrapping protocol (AttKE) that enables each party to
establish an independent secret key and secure channel to communicate with the Box
construction running inside the IEE. Finally, our implementation of the Box is agnostic of
the intended functionality, and can be linked to arbitrary functionality implementations,
provided that these comply with a simple labelled I/O interface. The top-level interface
to our protocol includes the code that runs inside the IEE, the code that runs outside the
IEE in the remote machine for book-keeping operations and the client-side code that
bootstraps a secure channel and then sends/receives messages from the functionality.

We compare our implementation with measurements we performed using the ABY
framework [19]. We chose ABY for comparison, as we could evaluate it on the same
platform we used for assessing our protocol, therefore avoiding differences due to
performance disparities of heterogeneous evaluation platforms. Although it is specific to
the two-party secure computation setting, ABY is representative of state-of-the-art MPC
implementations and we expect results for other frameworks such as Sharemind [16]
and SPDZ [18] to lead to similar conclusions; indeed, the crux of our performance gains
resides in the fact that our solution does not require encoding the computation in circuit
form, unlike all the aforementioned protocols.9

9 We also note that ABY assumes a semi-honest adversary, which is weaker than the one we
consider; but still our performance gains are significant.
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Phase Preparation (ms) Online (ms) Total (ms)
Protocol ABY Ours ABY Ours ABY Ours

In
pu

t
si

ze
(b
i
t
s

)

160 196.3 115.7 0.752 0.050 197.1 117.75
1,600 196.7 115.7 1.819 0.302 198.5 116.00

16,000 201.6 115.7 13.14 2.798 214.7 118.50
160,000 226.2 115.2 144.4 27.77 370.6 142.97

Phase ABY Ours
Preparation (ms) 197.9 115.84
Online (ms) 3.249 0.661
Total (ms) 201.1 116.50

Phase Preparation Online Total
Protocol ABY Ours ABY Ours ABY Ours

Se
ts

iz
e

100 224.8 115.8 1.084 0.043 225.9 115.84
1000 368.1 115.8 2.168 0.199 370.3 116.00

10,000 1442.2 115.8 12.88 1.758 1455.1 117.56
100,000 10,698.7 115.7 109.5 17.39 10,808.2 133.09

1,000,000 84,096.6 115.7 1616.0 173.1 85,712.6 288.80

Phase ABY Ours
Preparation (ms) 196.3 127.7
Online (ms) 0.404 0.024
Total (ms) 196.7 127.7

Table 1. Clockwisely, starting from upper left: hamming distance, AES, millionaire’s problem
and private set intersection

Like our protocol, the ABY protocol has two phases: a preparation phase and an
online phase. The preparation phase comprises the key exchange between the input
parties by means of oblivious transfer (OT), and generation of the garbled circuit (GC)
representing the desired function. In the online phase the GC gets evaluated and the
result is sent back to the output party. In our protocol, the preparation phase is used to
establish a secure channel between the IEE and the input parties. The online phase of
our protocol comprises the decryption of inputs in the Box component, the evaluation of
the payload function, and the encryption of the results, again by the Box component.

We evaluated the performance of four different secure two-party computation use
cases (Table 1): AES, millionaire’s problem, private set intersection and hamming
distance. In comparison to ABY, the preparation phase and online phase are shorter
with sgx-mpc-nacl, and consequently the overall runtime is faster as well. In general,
sgx-mpc-nacl is faster for all the testing computations performed. However, the gains
are considerably more noticeable when we increase with input size and computation.
This has the highest significance on evaluation of the private set intersection with the
largest input size (1 mill.), where our implementation is roughly 300 times faster.
SIDE CHANNELS AND SOFTWARE RESILIENT AGAINST TIMING ATTACKS. Recent
works [38,15] have pointed out that IEE-enabled systems such as Intel’s SGX do not
offer more protection against side-channel attacks than traditional microprocessors. This
is a relevant concern, since the IEE trust model which we also adopt in this paper
admits that the code outside IEEs is potentially malicious and that the machine is
under the control of an untrusted party. We believe that there are two aspects to this
problem that should be considered separately. The first aspect is the production of the
IEE-enabled hardware/firmware itself and the protection of the long-term secrets used
by the attestation security module. If the computations performed by the attestation
infrastructure itself are vulnerable, then there is nothing that can be done at the protocol
design/implementation level. This aspect of trust is within the remit of the manufacturers.

An orthogonal issue is the possibility that software running inside an IEE leaks part of
its state or short-term secrets via side channels. One should distinguish between software
observations and hardware/physical observations. In the former, software co-located in
the machine observes timing channels based on memory access patterns, control flow,
branch prediction, cache-based based attacks [15], page-fault side channels [38], etc.
Protection against these side-channel attacks has been widely studied in the practical
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crypto community, where a consensus exists that writing so-called constant-time software
is the most effective countermeasure [7,30]. As mentioned above, constant-time software
has the property that the entire sequence of memory addresses (in both data and code
memory) accessed by a program can be predicted in advance from public inputs, e.g., the
length of messages. When it comes to hardware/physical side-channel attacks such as
those relying on temperature measurements, power analysis, or electromagnetic radiation,
the effectiveness of software countermeasures is very limited, and improving hardware
defenses again implies obtaining additional guarantees from the equipment manufacturer.

Our implementation sgx-mpc-nacl enforces a strict constant-time policy that is
consistent with the IEE trust model. To provide a protocol that is fully constant-time,
one must also ensure that the executed functionality is constant-time. Recent work in the
formal verification area sheds new light how this can be achieved over low-level code in
a fully automatic way [1].
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