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Abstract. We consider the problem of buying physical goods with cryp-
tocurrencies. There is an inherent circular dependency: should be the
buyer trust the seller and pay before receiving the goods or should the
seller trust the buyer and ship the goods before receiving payment? This
dilemma is addressed in practice using a third party escrow service. How-
ever, we show that naive escrow protocols introduce both privacy and
security issues. We formalize the escrow problem and present a suite of
schemes with improved security and privacy properties. Our schemes are
compatible with Bitcoin and similar blockchain-based cryptocurrencies.

1 Introduction

While Bitcoin and its many successor cryptocurrencies o↵er a secure way to
transfer ownership of coins, di�culty arises when when users wish to exchange
digital assets for physical goods. At a high level, parties wish to perform an
atomic exchange with guaranteed fairness — i.e. either both the currency and
goods will change ownership or neither will. The same di�culty arises in elec-
tronic commerce with traditional payment mechanisms. A buyer doesn’t want
to pay without assurance that the seller will ship the purchased goods, while a
seller doesn’t want to ship without assurance that payment will be received

Traditionally, this problem is solved in one of two ways. For large retailers
with significant reputation (e.g. Walmart or Overstock) most customers are suf-
ficiently confident that goods will be shipped that they are willing to pay in
advance. For smaller sellers without a global reputation, buyers typically pay
via a trusted third party, such as eBay or Amazon. If the buyer does not receive
the item or the transaction is otherwise disputed, the third party will mediate
the dispute and refund the buyer if deemed necessary. In the interim, the funds
are in escrow with the intermediary. When users pay with credit cards, credit
card companies often serve a similar role. A buyer can register a complaint with
their issuer who will mediate and reverse charges if fraud is suspected.



This model has been adapted for online marketplaces employing cryptocur-
rencies for payment, including the original Silk Road [22] and many successors.
In this model, the buyer transfers the payment to a trusted third party who only
transfers it to the seller once it has ascertained that the product was delivered.
However, this approach is not optimal for two reasons. First, it requires the third
party to be actively involved in every transaction, even when there is no dispute.
Second, it is vulnerable to misbehavior by the mediator, which can simply pocket
the buyer’s payment and never transfer it to the seller. This is considerably more
di�cult to trace or rectify due to the irreversible and pseudonymous nature of
Bitcoin transactions. Furthermore, the history of Bitcoin exchanges [38] and on-
line marketplaces [22] has been plagued by fraud and hacks, making it di�cult
for buyers or sellers to place high trust in any single service as a trusted third
party. While better escrow protocols, which do not allow the mediator to triv-
ially abscond with funds, are known in the literature [19] (and in practice [7]),
they still introduce a number of problems.

Fortunately, Bitcoin’s scripting language enables better protocols than the
ones currently in use. We define a series of desirable properties for escrow pro-
tocols to have:

Security. Intuitively, an escrow protocol is secure if the mediator(s) cannot
transfer the funds to anyone other than the buyer or the seller.

Passivity. A passive escrow protocol requires no action on the part of the
mediator if no dispute arises, making the common case e�cient.

Privacy. If implemented naively, escrow transactions can leave a distinct
fingerprint visible on the blockchain which can potentially leak sensitive business
information. For example, online merchants may not want their competitors to
learn the rate at which they enter disputes with customers. We define a series
of privacy properties regarding whether observers can determine that an escrow
protocol was used, if a dispute occurred, or how that dispute was resolved.

Group escrow. To reduce the risk of trusting any single party to adjudicate
disputes honestly, we introduce the notion of group escrow, relying on a group of
mediators chosen jointly by the buyer and seller. Group escrow schemes should
not require communication between the mediators, leaving the buyer and seller
free to assemble a new group in an ad-hoc manner. Cheating should only be
possible if a majority of the mediators colludes with one of the transacting
parties.

Our contributions. To our knowledge, we are the first to formally study
the escrow problem for physical goods and define the related properties. We
introduce a series schemes with various properties, building up to our group
escrow schemes which is secure, private, and passive. We note that our protocol
is fully compatible with Bitcoin today as well as most other blockchain-based
cryptocurrencies.
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2 Background and Tools

2.1 ECDSA

Bitcoin, along with most subsequent cryptocurrencies, employs the Elliptic Curve
Digital Signature Algorithm (ECDSA) using NIST’s secp256k1 curve [2–4]. Our
protocols in this paper are largely agnostic to the details of the signature algo-
rithm, but we include a summary of ECDSA in the full version of this paper.

2.2 Secret sharing and threshold cryptography

Threshold secret sharing is a way to split a secret value into shares that can be
given to di↵erent participants, or players, with two properties: (1) any subset
of shares can reconstruct the secret, as long as the size of the subset equals or
exceeds a specified threshold (2) any subset of shares smaller than this threshold
together yields no information about the secret. In the most popular scheme,
due to Shamir, the secret is encoded as a degree t polynomial, and a random
point on this polynomial is given to each of n players, any t+1 of which can be
used to precisely reconstruct the polynomial using Lagrange interpolation [40].

Secret sharing schemes are fundamentally one-time use in that once the secret
is reconstructed, it is known to those who participated in reconstructing it. A
more general approach is threshold cryptography, whereby a su�cient quorum of
participants can agree to use a secret to execute a cryptographic computation
without necessarily reconstructing the secret in the process. A (t, n)-threshold
signature scheme distributes signing power to n players such that any group of
at least t+ 1 players can generate a signature, whereas a smaller group cannot.

A key property of threshold signatures is that the private key need not ever
be reconstructed. Even after repeated signing, nobody learns any information
about the private key that would allow them to produce signatures without a
threshold sized group. Indeed, threshold cryptography is a specific case which
led to the more general development of secure multiparty computation [29].

2.3 ECDSA threshold signatures

Gennaro et al. presented an ECDSA threshold signature scheme in [26]. While
previous threshold DSA signature schemes existed in the literature [27, 28, 34],
the scheme in [26] is the only ECDSA scheme that works for arbitrary n and
any t < n. All of our constructions that use threshold signatures can be instan-
tiated with the scheme from [26]. The shared key in this scheme can either be
distributed by a trusted dealer or generated jointly by the participating parties
in a trustless manner.

2.4 Stealth addresses and blinded addresses

Bitcoin stealth addresses [6] are a special address type that solve the following
problem: Alice would like to publish a static address to which people can send
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money. While she can do this, a blockchain observer will be able to trace all
incoming payments to Alice. Alice would thus like to publish such an address
while ensuring that the incoming payments she receives are neither linkable to
her nor to each other. Moreover, the payer and Alice should not need to have
any o↵-blockchain communication.

While stealth addresses are an elegant solution to this problem, these ad-
dresses have a unique structure, and as a result, the anonymity set provided
by using stealth addresses is limited to the set of Bitcoin users that use them.
For the use cases in this paper, we can relax the requirement that all commu-
nication must take place on the blockchain. Indeed, when there is a dispute in
an escrow transaction, we expect that the parties will communicate o✏ine with
the mediator. Thus, we allow o✏ine communication and as a result are able to
extend the anonymity set provided by such addresses to all Pay-to-PubkeyHash
transactions on the blockchain.

Our basic technique is largely the same as the one used in Bitcoin stealth
addresses [6] as well as deterministic wallets [41]. However, to our knowledge, we
are the first to prove its security. We present the details here, and refer to these
addresses as blinded addresses.

An ECDSA key pair is a private key x 2 Z

q

and a public key y = g

x computed
in G. For a given ECDSA key pair, (y, x), we show a blinding algorithm that
has the following property: anybody that knows just the public key y can create
a new public key y

0 and an auxiliary secret x̂ such that in order to create a
signature over a message with the key y

0, one needs to know both the original
key x as well as the auxiliary secret x̂. We stress that the input to this algorithm
is only the public parameters and the public key y.

On input y:

– choose x̂ 2 Z

q

at random
– compute ŷ = g

x̂ in G
– compute y

0 = y · ŷ in G
– output blinded public key y

0 and auxiliary secret x̂

One who knows both x and x̂ can create a signature that will verify with
the public key y

0. This is clear as the private key corresponding to y

0 is simply
x

0 = x+ x̂ in G.
See the full version of this paper for a security and privacy argument for this

blinding scheme.

3 Related Work

3.1 Fair Exchange

The problem of fair exchange is how two mutually distrusting parties can jointly
exchange digital commodities such that both parties receive the other party’s
input or neither do. Indeed, fair exchange is a special case of fair two-party
computation in which two parties wish to jointly perform a function over private
inputs such that either both parties receive the output or neither does.
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Fair exchange has been studied extensively in the cryptographic literature
[12, 16, 30]. Blum [18] and later Bahreman et al. [14] studied the problem of
contract signing and how to send certified electronic mail – that is one party
sends a document and the other sends a receipt– in a fair manner. Jakobsson
studied fair exchange in the context of electronic checks [30].

The study of fair exchange naturally leads to the desire for optimistic (or
passive) protocols [12] in which the third party only gets involved when there
is a dispute. Such protocols are ideal in that they are far easier to use at scale
as presumably the majority of transactions will not be disputed. This model is
often used in designing fair protocols[13, 20, 25, 32, 37].

One approach to building fair two-party protocols uses monetary penalties
[32, 33]. Intuitively, parties are incentivized to complete the protocol fairly, and
if one party receives its output but aborts before the other party does, the
cheating party will have to pay a penalty. Recently, several papers have proposed
variations of this idea and shown how one could build secure protocols on top
of Bitcoin, crafting Bitcoin transactions in such a way that a cheater will be
automatically penalized or an honest party rewarded [10, 11, 17].

3.2 Exchanging bitcoins for digital goods

Exchanging units of a cryptocurrency for a digital good can be thought of as
a special case of fair exchange. Elegant protocols exist which facilitate cross-
currency exchange in a fair and trustless manner [1, 9, 19, 23].

Zero-knowledge contingent payments (ZKCP) solves the problem of using
Bitcoin to purchase a solution to an NP-problem. Maxwell first presented the
ZKCP protocol in 2011 [36] and it was publicly demonstrated in 2016 when
bitcoins were traded for the solution to a Sudoku puzzle [35]. Banasiki et al.

formalize and refine Maxwell’s ZKCP protocol [15].
Juels et al. [31] propose a protocol for purchasing the private key to a specified

public key, using a platform with a Turing-complete scripting language such as
Ethereum. We limit our focus to the simpler capabilities of Bitcoin, which are
su�cient to build protocols for escrowing payment for physical goods.

4 Escrow: Motivation, definitions, and model

Existing fair-exchange schemes apply only to the transfer of digital assets and
generally fall into one of the following categories:

– Protocols that rely on transferring a digital signature (or “electronic check”[30]).
These protocols give a trusted third party the ability to reconstruct the sig-
nature, thus assuring fairness.

– Protocols that rely on the fact that the digital asset can be reproduced and
re-sent. Broadly, these schemes resolve disputes by enabling the mediator to
reconstruct the desired asset. The disputing party in essence deposits a copy
of its digital asset with the mediator.
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Bitcoin breaks both of these assumptions, so none of the existing fair-exchange
techniques work. While Bitcoin transactions are signed with digital signatures,
they are fundamentally di↵erent from the electronic checks and other electronic
forms of payment that are discussed in the existing literature. Under those
schemes, the assumption was always that the transfer of the digitally signed
transaction was equivalent to being paid. This was either because it relied on an
older form of electronic cash in which the signed statement served as a bearer
token and anyone bearing it could cash in the money, or it was due to the fact
that the signed statement served as a contract, and one could take the contract
to a court to receive payment.

With Bitcoin, however, a digitally signed transaction is insu�cient since until
the transaction is included in the blockchain, the buyer can double spend that
transaction. Thus, bitcoins cannot be escrowed in the traditional manner. The
buyer can sign a transaction that pays the seller, but this cannot be kept in
escrow. If it is in escrow, the buyer can attempt to prevent its inclusion in the
blockchain by frontrunning. That is, the buyer can quickly broadcast a conflicting
transaction if he sees the escrowed transaction broadcast to the network. The
only guaranteed way to know a signed transaction will have value is to include
it in the blockchain—but at that point the seller has been paid.

Of course, if the buyer double spends, the seller can use the signed transaction
to prove that fraud has occurred. But remember that Bitcoin does not use real-
world identities and often parties interact anonymously, so proof of fraud will
generally be insu�cient to recover lost money.

From the seller’s point of view, shipping physical goods is also unlike sce-
narios considered in the fair exchange literature because it is not possible to
cryptographically prove that the seller behaved honestly. We assume our medi-
ator will have to evaluate non-cryptographic evidence, such as package tracking
numbers or sign-on-delivery receipts, as online merchants already do today.

The public nature of the Bitcoin blockchain – i.e. the entire transaction his-
tory of Bitcoin is public – is also distinct from traditional fair exchange as-
sumptions. In a traditional fair exchange protocol, there is no global ledger so
no outsider could learn anything about the exchange or the escrow transactions.
With Bitcoin transactions, however, we will need to consider and actively protect
against the privacy implications imposed by the public nature of the blockchain.

Thus, unlike existing protocols for fair-exchange, our goal in this paper is
not to provide a cryptographic way to mediate disputes. Our goal is instead
to develop techniques in which the transacting parties can passively and pri-

vately allow a third party to mediate their transaction. To achieve fairness, our
protocols will make sure that both transacting parties cannot deviate from the
semi-trusted third party’s ruling.

4.1 Our scenario

Suppose Alice, a(n online) merchant, is selling an item to Bob, a (remote) cus-
tomer. A natural dilemma arises: when should Bob pay? If Bob pays immediately,
he runs the risk of Alice defrauding him and never sending him the item. Yet
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if he demands to receive the item before paying, Alice runs the risk of being
defrauded by never being paid.

This problem arises in any payment system where the service and the pay-
ment cannot be simultaneously exchanged. A trivial solution is to use a payment
platform which escrows the payment and can mediate in the event of a dispute.
Reversible payment systems (e.g. credit card payments) enable the transaction
to go through right away, but we still describe them as escrow services because
the intermediary has the ability to undo the payment.

Because Bitcoin transactions are irreversible, we must rely on an explicit
escrow service if the buyer and seller don’t trust each other. Thus, instead of
sending money to Alice directly, Bob sends the payment to a special escrow
address that neither Bob nor Alice is able to withdraw from unilaterally. A
mediator is a third-party used to mediate a transaction which is capable of
deciding which party can withdraw funds from the escrow address.

4.2 Active and optimistic protocols

While a mediator must take action in the case of a dispute, we would like to
avoid requiring any action by the mediator if no dispute arises. We define the
requirements placed on the mediator with the following two properties:

Definition 4.1 (Active on deposit). An escrow protocol is active on deposit

if the mediator must actively participate when transacting parties deposit money

into escrow.

Definition 4.2 (Active on withdrawal). An escrow protocol is active on

withdrawal if the mediator must actively participate when transacting parties

withdraw money from escrow even if there is no dispute.

Of course a protocol may be both active on deposit and active on withdrawal.
Note that the mediator is, by definition, always active in the event of a dispute,
so we only consider the dispute-free case in our definition of active on withdrawal.
Combining these two definitions, we can define the requirements for a mediator
to be purely passive, or optimistic:

Definition 4.3 (Optimistic). An escrow protocol is optimistic (eq. passive) if

it is neither active on deposit nor active on withdrawal.

4.3 Security of escrow protocols

While the essential nature of a mediator is that both parties must trust it to
make a fair decision in the event of a dispute, we can consider the consequences
if a mediator acts maliciously. We will consider only an external malicious me-
diator, meaning an adversary that does not also control one of the transacting
parties. An internal malicious mediator also controls (or perhaps is) one of the
participating parties. It is clear that security against an internal malicious me-
diator is unachievable. Recall that when a dispute arises, it is the responsibility
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of the mediator to award the funds to the correct party even if the losing party
objects. Thus, any mediator by definition must have the ability to award the
funds to one of the parties when both the mediator and that party cooperate.
An internal adversary that controls the mediator as well as one of the transacting
parties can create a dispute and have the mediator rule in its favor, guaranteeing
that it receives the funds. For this reason, we define security of mediators only
using the notion of an external attacker4:

Definition 4.4 (Secure). An escrow protocol is secure if a malicious mediator

cannot transfer any of the money held in escrow to an arbitrary address without

the cooperation of either the buyer or seller.

4.4 Privacy

Another concern for escrow protocols is privacy. The Bitcoin blockchain is public
and reveals considerable information, including the amounts and addresses of all
transactions. For escrow transactions, we consider three notions of privacy. An
external observer is a party other than the transacting parties or the mediator.

Definition 4.5 (Dispute-hiding). An escrow protocol is dispute-hiding if an

external observer cannot tell whether there was a dispute that needed to be re-

solved by the mediator.

Definition 4.6 (Externally-hiding). An escrow protocol is externally-hiding

if an external observer cannot determine which transactions on the blockchain

are components of that escrow protocol.

Note that our definition of externally hiding inherently relies on what baseline
(non-escrow) transactions are occurring on the blockchain. For our purposes, we
assume all non-escrow transactions are simple transactions sending money to a
specified address (in Bitcoin parlance, a P2PKH transaction).

Definition 4.7 (Internally-hiding). An escrow protocol is internally-hiding

if the mediator itself cannot identify that the protocol has been executed with

itself as a mediator in the absence of a dispute.

We note that internally-hiding and externally-hiding are distinct properties
and neither implies the other. Clearly, a scheme could be externally-hiding but
not internally-hiding. This will occur if the mediator can tell that money has
been put in its escrow, but an outsider looking at the blockchain cannot detect
that escrow is being used. More interestingly though, a scheme can be internally-
hiding but not externally-hiding. This occurs when it is clear from looking at
the blockchain that escrow is being used, but the mediator cannot detect that
its service is the one being used.

4 There may be other desirable features that can be categorized as security properties
that are out of the scope of this work.
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It is clear why a company may want full privacy as they may want to keep
all details of their business private. However, it is possible that an online mer-
chant might not need its escrowed payments externally or internally hiding (say,
it publicizes on its website that it uses escrow with a specific mediator). The
company may however still want the escrow protocol to be dispute-hiding so
that competitors cannot determine how often sales are disputed.

Of course, a buyer may take the exact opposite approach and demand trans-
parency – i.e. that any company that it interacts with uses an escrow service that
is not dispute-hiding so that the buyer can use this information to determine
how often the seller’s transactions are disputed.

4.5 Denial of Service

Our definition of security only prevents a directly profitable attack. Namely, the
goal of the adversary is to steal some or all of the money being held in escrow
by transferring the money elsewhere (e.g. to an address the adversary controls).
However, a malicious mediator might instead deny service by refusing to mediate
when there is a dispute.

The power of a denial-of-service attack is directly related to the type of
mediator. For an active-on-withdrawal protocol, the denial-of-service attack can
be launched even when the parties do not dispute, whereas for an optimistic
protocol a denial-of-service attack can only be launched when the parties dispute.

Note that a denial-of-service attack may be profitable if the mediator is able
to extort a bribe from the transacting parties in order to resolve a dispute. If
the mediator su↵ers no loss if the dispute is never resolved, then it carries no
financial risk from attempting such extortion. Of course, it may face significant
risk to its reputation.

We can design schemes that prevent denial of service in Section 5.5, but as
we will see, running such a service requires the mediator to put its own money
into escrow as a surety bond and requires an active-on-deposit protocol.

5 Escrow protocols

In the previous section, we provided several definitions and security models out-
lining various types of mediators. We now propose several protocols for mediators
and show which properties they fulfill; we refer the reader to the full version of
this paper for detailed analysis of each scheme’s properties.

5.1 Escrow via direct payment (the Silk Road scheme)

The simplest scheme is one in which the buyer sends money directly to the
mediator’s address. The mediator will then transfer the funds to the seller or back
to the buyer as appropriate. In case of a dispute, the mediator will investigate and
send the funds to the party that it deems to be correct. The illicit marketplace
Silk Road famously used a variation of this method of escrow.
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To improve privacy, rather than sending the funds to the mediator’s long
term address, the buyer can send funds to a blinded address (Section 2.4). This
will allow the scheme to remain not-active-on-deposit while also not using the
mediator’s long term identifiable address. The buyer and seller can jointly gen-
erate the randomness and run this algorithm together so that they are both
convinced that it was run properly.

To redeem the escrowed funds, the party to be paid will hand over x̂ to the
mediator. Using (x̂) together with its secret key x, the mediator can now sign
over the key y

0, and thus create the pay-out transaction.
Properties. This naive scheme has many drawbacks: it is not secure, not opti-
mistic, and not internally hiding. On the other hand, the scheme is not active-
on-deposit and its simplistic nature scheme is somewhat privacy-preserving as
it is both dispute hiding and externally hiding.

5.2 Escrow via Multisig

A well-known improvement uses Bitcoin’s multisig feature. In this scheme, the
money is not sent directly to the escrow service’s address, but instead it is sent
to a 2-of-3 multisig address with one key controlled by each of the transacting
parties and one controlled by the mediator. When there is no dispute, the two
transacting parties can together create the pay-out transaction. Only when there
is a dispute will the mediator get involved, collaborating with either the buyer
or seller (as appropriate) to redeem the funds. This scheme is available today.5

As in the Silk Road scheme, for the sake of adding privacy, rather than
including a longstanding address that is publicly associated with the mediator,
the parties can use a blinded address.
Properties. This protocol is secure as the mediator cannot unilaterally redeem
the escrowed funds. It is also optimistic. However it is susceptible to denial-of-
service attack as the mediator can refuse to mediate a dispute.

The use of a blinded address for the mediator makes this scheme internally-
hiding. The 2-of-3 structure makes the scheme not externally hiding, however,
and it is also not dispute-hiding as one may be able to detect a dispute through
transaction graph analysis (see the full version of this paper for more details).

If one’s goal is an escrow scheme that is transparent, then the non-blinded
version of this scheme is a good candidate as it is secure and allows blockchain
observers to detect disputed transactions.

5.3 Escrow via threshold signatures

Replacing the 2-of-3 multisignature address with a single 2-of-3 threshold address
improves the privacy of this scheme. With threshold signatures, the three parties
jointly generate shares of a regular single key address such that any 2 of them can
jointly spend the money in that address. Unlike multisig, this threshold address
is indistinguishable from a typical address and to an external observer would

5 See for example https://escrowmybits.com/.
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look like the (blinded) Silk Road scheme. Moreover, the signed transaction on
the blockchain does not give any indication as to which parties participated in
generating the signature.
Properties. This scheme is secure, externally hiding, and dispute hiding. It
is not, however, optimistic as it is active-on-deposit – the threshold signature
scheme requires an interactive setup in which all 3 parties must participate. It is
also susceptible to denial of service. It also generates a new key every time that
both parties as well as the mediator must keep track of.

5.4 Escrow via encrypt-and-swap

We now present a new optimistic protocol which meets all of our privacy prop-
erties:

1. Alice and Bob generate a 2�of�2 shared ECDSA key. Note that we do not
need a full threshold scheme, but the Thresh-Key-Gen protocol of Gennaro
al. [26] is suitable to generate the secret shares in a distributed manner. At
the end of the protocol, Alice has x

A

, Bob has x

B

, and the shared public
key is y = g

xA+xB . Moreover, as part of the protocol, both parties learn
y

A

= g

xA and y

B

= g

xB .
2. Alice sends c

A

= E

M

(x
A

), an encryption of her secret x
A

under M ’s public
key, to Bob together with a zero-knowledge proof6 ⇡

A

that gD(cA) = y

A

.
3. Bob sends c

B

= E

M

(x
B

) to Alice together with a zero-knowledge proof ⇡
B

that gD(cB) = y

B

.
4. In the absence of a dispute, Alice sends x

A

to Bob and Bob can now transfer
the funds to his own account. Conversely, if both parties agree that a refund
is in order, Bob sends x

B

to Alice.
5. In the event of a dispute, the mediator investigates and chooses the “winner”,

which we’ll denote W 2 {A,B}. The winner sends c
W

to M. M decrypts it
and sends it back to W , who now has both shares of the key and thus can
sign a redeem transaction.

Encrypt-and-swap protocol
6 The zero knowledge proof proves that a ciphertext encrypts the discrete log of a
known value for a known base. For details of how to construct this proof see Ca-
menisch et al. [21]. Gennaro et al. demonstrates that these proofs work with ECDSA
and Bitcoin keys [26].
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Equivocation This scheme introduces the risk of an equivocation attack in
which a malicious mediator tells both parties that they won the dispute. Each
party will give their ciphertext to the mediator, at which point the mediator can
reconstruct the entire key and steal the escrowed funds.

We can prevent this attack by replacing 2-of-2 shared address with a 3-of-3
address. The third share x

C

will be shared by the transacting parties and never
given to the mediator. This way, even if the mediator equivocates, it will only
receive two shares x

A

and x

B

and cannot transfer the money.
Properties. This protocol is both secure and optimistic. Moreover it satisfies all
of our privacy properties: it is internally-hiding, externally-hiding, and dispute-
hiding (on the blockchain, it appears as if funds were sent to an ordinary address).
The only con of this scheme is that it is susceptible to a denial-of-service attack.

5.5 Escrow with bond

We now present a scheme that is resilient to denial-of-service attacks. To do
this, we include an incentive system to punish a mediator who fails to release
the funds from escrow. At a high level, we require the mediator to deposit a surety
bond alongside the transacting parties. The general idea of preventing denial-
of-service attacks by having the third party put money in bond has appeared in
other contexts [30].

We make use of a feature of the Bitcoin scripting language that requires one
to present an x such that SHA-256(x) = y as a condition of spending money. This
feature has previously been used, for example, to construct atomic cross-chain
swap protocols (see Section 3.2) or o✏ine micropayment channels [39].

We use this feature to build a transaction that ensures that the mediator will
only be able to take his money out of bond if the escrow transaction is resolved.

1. Alice and Bob agree on a value x that is unknown to the mediator. They
compute y =SHA-256(x).

2. Bob, the buyer, creates a transaction with two inputs. One input is the
funds that he is putting in escrow; the other is the mediator’s bond. The
bond should be equal to Bob’s payment amount.

3. The first output of the transaction requires 2-of-3 of Alice, Bob, and the
mediator to sign. Moreover, it requires a SHA-256 preimage of y (e.g. x).

4. The second output requires a signature from the mediator as well as a SHA-
256 preimage of y.

Bond Protocol to prevent denial-of-service attack
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In the absence of a dispute, Alice and Bob can redeem the first output them-
selves). However, in the process, they must reveal x publicly on the blockchain,
which the mediator can then use to recover their bond. In case of a dispute,
Alice and Bob will refuse to reveal x until the mediator chooses a winner and
signs the output transaction, preventing the mediator from recovering the bond
until the dispute is resolved.
Properties. This protocol is both secure and resistant to denial of service.
However, it is active-on-deposit and not externally-hiding, internally-hiding, nor
dispute-hiding.

6 Group escrow

The escrow protocols we have described so far assume that there is a single
mediator. Moreover, only one of these schemes (escrow bond) was resistant to
denial-of-service attacks, and this scheme achieved this property at the expense
of being active-on-deposit and compromising privacy.

Instead, we propose an entirely di↵erent way to deal with denial-of-service
attacks (as well as improve resistance to collusion attacks or a mediator simply
going o✏ine). By distributing the signing power among n mediators who will
resolve disputes by a majority vote (we assume n is odd), we can ensure that no
single mediator has the ability to abort and deny service. As long as the majority
are willing to complete the protocol, a denial-of-service attack is thwarted.

A recurring lesson in Bitcoin’s history is that putting trust in any single party
is risky. Bitcoin has been plagued by exit scams in which third-party services
gain consumer trust and then disappear [5]. In a study of 40 Bitcoin exchanges,
Moore and Christin find that approximately 40% of these services went under,
often leaving no funds and no recourse for the customers that trusted them
[38]. In 2014, the then-largest exchange, Mt. Gox, famously claimed to have lost
850,000 bitcoins, and passed the losses directly to its customers.

6.1 Definitions and models

Our definitions from single-mediator escrow protocols all remain in place, with
the exception that security now requires protection from theft even if all of the
mediators collude.

Definition 6.1 (Secure group escrow protocol). A group escrow service is

said to be secure if an external adversary that fully controls all of the mediators

cannot transfer any of the money being held in escrow.

We discuss two di↵erent models for how such groups of escrow services are
assembled. First, we might use an ad-hoc group of mediators. In this model,
the buyer and seller are free to (jointly) choose anybody with a Bitcoin address
to serve as mediators and the mediators need not ever communicate with each
other. Note that only one mediator must be jointly chosen (and trusted). The
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buyer may choose k mediators and the seller chooses k mediators. They then
jointly choose 1 mediator as a “tie-breaker.”

We can also leverage predetermined groups which have already communicated
and agreed to work together. The buyer and the seller merely choose one of these
groups to act as their mediator service.

6.2 Group escrow via Multisig

We can build a scheme using a script specifying that the funds can be redeemed if
either (1) the transacting parties both sign or (2) one of the transacting parties
together with a majority of the mediators signs. Using A and B to represent
signatures by the transacting parties and M1, . . . ,M2n+1 to represent respective
signatures by the mediators, the script will check that the following Boolean
formula is satisfied:

(A ^B)_ (A ^ n+1-of-{M1, . . . ,M2n+1})_ (B ^ n+1-of-{M1, . . . ,M2n+1})

For privacy, the mediators’ addresses can be blinded as before.
While Bitcoin does limit the number of signature operations that a script can

contain, the limits are reasonable in practice. In particular, using Bitcoin’s pay
to script hash (P2SH) feature, one can create a script that specifies 15 signature
operations [8]. The script above requires up to 4 + 2m signature operations
to validate, where m is the number of moderators. Thus, this script would be
acceptable for m  5, and in practice 5 mediators will generally be su�cient.
Properties. This scheme is secure and optimistic. Since the mediators’ ad-
dresses are blinded, it is also internally hiding. However, it is neither dispute
hiding nor internally-hiding. It is partially resistant to denial-of-service attacks
as in order to launch such an attacks, the majority of the mediators must par-
ticipate.

6.3 Group escrow via encrypt-and-swap

We can build a group-analog to our encrypt-and-swap scheme. As before, the
transacting parties run the Thresh-Key-Gen protocol of [26] to generate a shared
2-of-2 threshold address. Once they run this protocol, Alice has her key share
x

A

, and Bob has x
B

. Moreover, as a side e↵ect of the Thresh-Key-Gen protocol,
both parties learn y

A

= g

xA and y

B

= g

xB

The parties then create a Shamir secret sharing of x
A

and x

B

. If there are
n = 2t + 1 mediators, the transacting parties share their secret on a degree
t polynomial, thus ensuring that a majority of the mediators is necessary and
su�cient to recover the secret.

Using each mediator’s public key M

i

, each party encrypts the corresponding
share to that mediator and gives all of these ciphertexts to the other party.

If there is no dispute, the party that is paying will give its key share to the
other party, who now has both shares and can redeem the money.
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In the event of a dispute, the mediators will vote. The winning party will
give each mediator the corresponding ciphertext that it received from the other
party. The mediators decrypt their shares, and a majority reconstructs the losing
party’s threshold key share. They then give this reconstructed key share to the
winning party who can now create a pay-out transaction to itself.

If all players honestly follow the protocol, it is clear that this protocol is both
secure and correct. However, we wish to achieve security against a malicious
player that may deviate from the protocol. Intuitively, in order to achieve this,
each party needs to prove to the other party that the values that it gives it are
indeed Shamir-secret sharings of their threshold secret share.

We implement this proof in two phases: for each mediator, when Alice gives
Bob the ciphertext c

i

= E

Mi(Pi

), Alice additionally includes a Feldman VSS [24]
(see the full version of this paper for a summary of Feldman VSS) value w

i

= g

Pi

as well as a zero-knowledge proof of consistency between these two values. Using
Feldman’s scheme, Bob then verifies that w

i

is indeed a Shamir secret-share of
x

A

.
We now present the details of this protocol:

1. Alice and Bob run Thresh-Key-Gen of Gennaro et al. [26] to generate a
shared 2-of-2 ECDSA key. Alice has x

A

, Bob has x
B

, and the shared public
key is y = g

xA+xB . As part of the protocol, both parties learn y

A

= g

xA and
y

B

= g

xB .
2. Alice shares x

A

over a degree t polynomial with coe�cients a1, . . . , at.

P

(a)(w) = x

A

+ a1w + · · ·+ a

t

w

t

3. Alice computes a share P

(a)
i

= P

(a)(i) for each mediator and encrypts that
mediator’s share under their public key as follows:

c

(a)
i

= E

Mi(P
(a)
i

)

Alice gives Bob {c1, c2, . . . , cn}.
4. For each mediator’s share, Alice computes w

(a)
i

= g

P

(a)
i and gives Bob

{w(a)
1 , w

(a)
2 , . . . , w

(a)
n

}.
5. For each mediator, Alice gives Bob a zero knowledge proof ⇧(a)

i

that states

g

DMi (c
(a)
i ) = w

(a)
i

That is Alice proves that the c

(a)
i

is an encryption of the discrete log with

respect to g of w(a)
i

.
6. Alice creates a Feldman VSS of the shared secret. In particular, she gives

Bob c

(a)
1 = g

a1
, . . . , c

(a)
n

= g

an . Bob already has c(a)0 = g

xA as this was output
in step 1.

7. Bob verifies each of the zero-knowledge proofs ⇧(a)
i

. Bob also verifies 8i,

w

(a)
i

= c

(a)
0 · (c(a)1 )i · (c(a)2 )i

2

· · · (c(a)
t

)i
t

If any of these checks fail, Bob aborts.
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8. Bob and Alice perform steps 2-8 in reverse.

9. Now that each party is convinced that they hold the VSS of the other party’s
share encrypted to the mediators, Bob (the buyer) deposits the money in
the escrow address.

Properties. This protocol is secure, optimistic, internally-hiding, externally-
hiding, and dispute-hiding. It supports ad-hoc groups. Moreover, it’s group na-
ture means that it has partial denial-of-service resistance as in order to launch
such an attack, a majority of the mediators must participate.
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Protocol Sec. Activity Security Privacy Groups

Direct payment 5.1 • •
2-of-3 multisig 5.2 • • • • � � •
2-of-3 threshold signature 5.3 • • • •
Encrypt-and-swap 5.4 • • • • • • •
Escrow with bond 5.5 • • • �
Group multisig 6.2 • • • • � • • •
Group encrypt-and-swap 6.3 • • • • � • • • • •

• fully achieves
� partially achieves

Table 1. Comparative evaluation of escrow schemes.

7 Conclusion

We have proposed a number of protocols, as summarized and compared in Table
1. Assuming the goal is complete privacy, our recommendation is to use group
escrow via encrypt-and-swap as it comes closest to fulfilling all of the properties
that we set forth. If, however, the goal is transparency, then one should choose the
non-blinded version of the 2-of-3 multisig scheme or the group multisig scheme
as they are not dispute-hiding.
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