
Optimally Sound Sigma Protocols Under DCRA

Helger Lipmaa

University of Tartu, Tartu, Estonia

Abstract. Given a well-chosen additively homomorphic cryptosystem
and a ⌃ protocol with linear answer, Damg̊ard, Fazio, and Nicolosi
proposed a non-interactive designated-verifier zero knowledge argument
in the registered public key model that is sound under non-standard
complexity-leveraging assumptions. In 2015, Chaidos and Groth showed
how to achieve the weaker yet reasonable culpable soundness notion un-
der standard assumptions but only if the plaintext space order is prime. It
makes use of ⌃ protocols that satisfy what we call the optimal culpable

soundness. Unfortunately, most of the known additively homomorphic
cryptosystems (like the Paillier Elgamal cryptosystem that is secure un-
der the standard Decisional Composite Residuosity Assumption) have
composite-order plaintext space. We construct optimally culpable sound
⌃ protocols and thus culpably sound non-interactive designated-verifier
zero knowledge protocols for NP under standard assumptions given that
the least prime divisor of the plaintext space order is large.

Keywords: Culpable soundness, designated verifier, homomorphic en-
cryption, non-interactive zero knowledge, optimal soundness, registered
public key model

1 Introduction

Non-interactive zero knowledge (NIZK, [5]) proof system enable the prover to
convince the verifier in the truth of a statement without revealing any side in-
formation. Unfortunately, it is well known that NIZK proof systems are not
secure in the standard model. Usually, this means that one uses the random
oracle model [4] or the common reference string (CRS, [5]) model. In particular,
⌃ protocols [10] can be e�ciently transformed into NIZK proof systems in the
random oracle model by using the Fiat-Shamir heuristic [17]. However, the ran-
dom oracle model (and this concrete transformation) is questionable, since there
exist protocols secure in the random oracle model that are not instantiable with
any function [7,19]. While newer transformations make less use of the random
oracle (for example, by relying on non-programmable random oracles [27,9]), it
is commonly felt that the random oracle model is at best a heuristic.

On the other hand, using the CRS model results often in less e�cient pro-
tocols; moreover, also the CRS model is quite strong and requires significant
amount of trust in the creator of the CRS. See [2] for some of the critique. It
is desirable to construct NIZK proof systems based on a less demanding trust
model.

2 Helger Lipmaa

Moreover, NIZK proof systems in the CRS model are not always perfect
approximations of interactive zero knowledge proof systems [25,2,12].

First, interactive zero knowledge provides undeniability: since the verifier can
simulate the proof, she cannot convince third parties that she received a ZK proof
from the specific prover. Undeniability is important in many applications where
it provides a certain amount of protection against third parties (for example,
coercers, see [25] for more motivation).

To provide undeniability also in the case of NIZK, Jakobsson et al. [25] in-
troduced the notion of designated verifier proof systems. A designated verifier
NIZK (NIDVZK) proof system is of type “either the statement is true or I am
the intended verifier (i.e., I know some witness w

V

associated with the verifier)”.
Hence, the designated verifier is convinced that the claim is true, while for ev-
erybody else it could look like this proof came from the verifier instead of the
prover and thus they will not be convinced in the veracity of the claim. While
NIDVZK proofs are verifiable only by (the prover and) the designated verifier,
one can argue that an NIDVZK proof system provides a good approximation of
interactive zero knowledge proof systems since neither is transferable [25].

Second, one can rewind interactive zero knowledge proofs of knowledge to
extract the prover’s witness. This guarantees that an accepted prover also knows
the witness. Such extraction is impossible, for example, in the case of some
Groth-Sahai proof systems [24]. To “emulate” extractability, Groth et al. [23]
introduced the notion of culpable soundness. In a nutshell, culpable soundness
means that it should be di�cult to break the soundness of a zero knowledge proof
system while knowing a witness w

guilt

that the input does not belong to the input
language. Culpable soundness has been successfully used in applications like
shu✏ing [22,16]; see [23] for other applications. Moreover, culpable soundness is
also sometimes the most one can get since there exist no computationally (non-
culpably) sound statistical NIZK argument systems for non-trivial languages
under standard assumptions [1].

Closer to the current work, Damg̊ard, Fazio, and Nicolosi [12] constructed a
transformation (that we will call the DFN transformation) from an optimally
sound [30]1 and specially honest-verifier zero knowledge ⌃-protocol [10] with a
linear answer to an NIDVZK argument system (i.e., a computationally sound
NIDVZK proof system) under a complexity leveraging assumption. Recall that
a ⌃ protocol for language L is optimally sound if the following holds: if the
common input x is not in L, then for every a there exists at most one good e
for which there exists a z, such that (x, a, e, z) is an accepting view of the ⌃
protocol. Optimal soundness is a potentially weaker requirement than special
soundness.

Importantly, the DFN transformation results in an NIDVZK argument sys-
tem that is secure in the registered-public key (RPK, [2]) model that is considered
to be significantly weaker than the CRS model. Moreover, the resulting NIDVZK
argument systems are almost as e�cient as the original ⌃-protocols. While the
DFN transformation can be only applied to optimally sound ⌃-protocols with

1 This property is also known under the name of relaxed special soundness [12]

Optimally Sound Sigma Protocols Under DCRA 3

linear answers, most of the known ⌃-protocols in the discrete-logarithm based
setting have those properties. In particular, [12] constructed an NIDVZK argu-
ment system in the RPK model for the NP-complete language Circuit-SAT.

As argued before, the designated verifier property of the DFN transformation
is very useful in certain applications. Hence, the DFN transformation results in
e�cient argument systems, secure in a weaker trust model (the RPK model)
that better approximate security properties of interactive zero knowledge proof
systems than say the Groth-Sahai proof system. However, it also has weaknesses.
In particular, the original DFN transform from [12] is only secure under non-
standard complexity leveraging assumptions.

Ventre and Visconti [34] modified the DFN transformation to work under
standard (non-leveraged) assumptions, but their NIDVZK argument system only
achieves so called weak culpable soundness (called weak co-soundness in [34]).2

As we argued before, culpable soundness approximates interactive zero knowl-
edge. However, weak culpable soundness seems to be too restrictive, and results
in undesirable overhead. We omit discussion due to space limits and refer to [8].

Recently, Chaidos and Groth [8] further modified the DFN transformation
so that the resulting NIDVZK argument systems are culpably sound under stan-
dard assumptions. However, for this they assumed that the plaintext space of the
underlying strongly additively homomorphic cryptosystem (see [8] for the defini-
tion of such cryptosystems), about which the ⌃-protocols are, has a prime order
p. Under this assumption, they showed that several known e�cient ⌃ protocols
have the optimal culpable soundness property.

However, the restriction that p is prime can be a problem in many applica-
tions, since only some cryptosystems with required properties (like the Okamoto-
Uchiyama cryptosystem [31]) are known.3 Moreover, in the Okamoto-Uchiyama
cryptosystem, p must stay secret; this complicates the design of many common
protocols where one needs to know the order of the plaintext space.

Our Contributions. We construct a DFN-transform under standard assump-
tion for additively homomorphic cryptosystems where the plaintext space has
a composite order N , such that it is solely required that the least prime factor
of N is su�ciently large. While all our examples are about the DCRA-based
Paillier Elgamal cryptosystem [14,6], it is clear that they can modified to work
with other suitable cryptosystems. The main novelty of our work is proving that
several known ⌃ protocols over composite order plaintext spaces are optimally
culpably sound. We postpone the construction of culpably sound NIDVZK ar-
gument systems to the appendix.

2 Briefly, weak culpable soundness means that it is di�cult to cheat and at the same
time know a witness assessing the fact that you are cheating, and also know that your
cheating succeeds (i.e., know a witness that certifies that the verification equations
hold). In the case of culpable soundness [23], the latter is not needed. See [34] for
more details.

3 The fact that one would like to have e�cient ⌃-protocols excludes known lattice-
based cryptosystems with prime-order plaintext space.

4 Helger Lipmaa

More precisely, an optimally sound ⌃ protocol is optimally culpable sound4

if the following property holds: a successful cheating prover A that knows that
she cheats (e.g., by knowing the secret key of the public key cryptosystem) can
e�ciently recover the good e. That is, there exists an e�cient extractor S.EX
that extracts good e (if it exists), given the common input, the first message of
the ⌃ protocol (e.g., a tuple of ciphertexts) output by A, and the guilt witness
(e.g., the secret key of the underlying cryptosystem). We emphasize that the
optimal culpable soundness is a stronger notion of security compared to the
optimal soundness.

The main technical contribution of the current paper is the construction of an
e�cient S.EX for several (known) ⌃ protocols about the plaintexts of the Pail-
lier Elgamal cryptosystem. By using S.EX, we prove optimal culpable soundness
of corresponding ⌃ protocols without relying on the Strong RSA or any other
computational assumption. Importantly, the proofs of optimal culpable sound-
ness are simpler than the special soundness proofs — that we also reproduce for
the sake of completeness — for the same ⌃ protocols.

For the constructed extractors to be successful, it is only required that the
least prime factor of N is large enough. This means that one can use essentially
any known additively homomorphic public-key cryptosystem that has a large
plaintext space. On the other hand, Chaidos and Groth [8] constructed S.EX
only in the case of prime-order plaintext space (with the Okamoto-Uchiyama
cryptosystem being the sole mentioned candidate cryptosystem in [8]).

Before we give more details about the new ⌃ protocols, let us recall that the
Paillier Elgamal cryptosystem has several other interesting properties:
1. First, it is double trapdoor [6]: it has two statistically independent trapdoors,

the prime factorization sk
fact

of an RSA modulus N , and an Elgamal-like
secret key sk

dl

. Decryption is possible, given either of the two trapdoors.
Hence, given that N is securely generated, many di↵erent parties can operate
with plaintexts and ciphertexts modulo the sameN ; this simplifies the design
of threshold encryption schemes, [14].

2. Second, many of the standard ⌃ protocols, see [26], working on top of
the Paillier Elgamal cryptosystem satisfy special soundness only under the
Strong RSA assumption [3].
In the case of the Paillier Elgamal cryptosystem, S.EX only needs to use the

second trapdoor sk
dl

. Hence, if a cheating prover manages to make the verifier
to accept, the extractor who knows sk

dl

can extract the good challenge, given
that it exists. On top of it, the extractor may also extract a non-trivial factor of
N , which means that he will break the factoring assumption. In practice, this
fact is relevant in the case of threshold encryption, where such a factor can be
recovered only when a majority of the key generating parties collaborate, while
extraction is possible by every single party who knows the key sk

dl

.
However, the extractor does not need factoring to be hard to be successful,

i.e., extraction is unconditionally successful. Thus, while some ⌃ protocols about
the plaintexts of the Paillier Elgamal cryptosystem are specially sound only

4 Chaidos and Groth called it soundness with the unique identifiable challenge.

Optimally Sound Sigma Protocols Under DCRA 5

under the Strong RSA assumption, their optimal culpable soundness (and hence,
also optimal soundness) is unconditional. Up to our knowledge, this separation
has not been noticed before. We leave it as in interesting question whether such
a phenomenon is widespread.

The modified DFN-transform achieves culpable soundness in the sense that
soundness is guaranteed against adversaries that return together with the ac-
cepting view also the secret key of the prover (but no other secret value). If we
require the verifier to give to the authority a zero knowledge proof of knowledge
of her secret key, we can construct an adversary that retrieves the secret key from
the registration process, and thus achieves the standard (not culpable) notion of
soundness.

2 Preliminaries

For a predicate P , let [P (x)] be 1 i↵ P (x) is true, and 0 otherwise. We de-
note uniform distribution on set S by U(S), and let a

r

S to denote choos-
ing a from U(S). The statistical distance between two sets S

1

, S
2

✓ ⌦ is
SD(U(S

1

), U(S
2

)) = 1

2

P
x2⌦

|Pr[x 2 S
2

] � Pr[x 2 S
1

]|. We will implicitly use
the following lemma.

Lemma 1. Let S
1

and S
2

be two finite sets. If S
1

✓ S
2

, we have
SD(U(S

1

), U(S
2

)) = 1 � |S
1

|/|S
2

|. In particular, if |S
2

| = (1 + 1/t) · |S
1

| for
some positive integer t, then SD(U(S

1

), U(S
2

)) = 1/(t+ 1).

Proof. SD(U(S
1

), U(S
2

)) = 1

2

(|S
2

\ S
1

|/|S
2

|+ |S
1

| · (1/|S
1

|� 1/|S
2

|)) = 1 �
|S

1

|/|S
2

|. ut

For a positive integer N , let lpf(N) be its least prime factor. Let '(N) be
the Euler totient function. Given that gcd(a, b) = �, the Extended Euclidean
Algorithm returns integers ↵ and �, such that ↵a+ �b = �.

For any integer a and an odd prime p, the Legendre symbol
⇣

a

p

⌘
is defined

as
⇣

a

p

⌘
= 0, if a ⌘ 0 (mod p),

⇣
a

p

⌘
= +1, if a 6⌘ 0 (mod p) and for some integer

x, a ⌘ x2 (mod p), and
⇣

a

p

⌘
= �1, if there is no such x. For any integer a and

any positive odd integer N , the Jacobi symbol is defined as the product of the

Legendre symbols corresponding to the prime factors of N :
�

a

N

�
=

Q
t

i=1

⇣
a

pi

⌘
↵i

,

where N =
Q

t

i=1

p↵i
i

for di↵erent primes p
i

. Let J
N

= {a 2 Z
N

:
�

a

N

�
= 1};

clearly J
N

E Z⇤
N

(i.e., J
N

is a subgroup of Z⇤
N

). Let Q
N

E J
N

be the subgroup
of quadratic residues in Z

N

. The Jacobi symbol can be computed in polynomial
time, given only a and N .

2.1 Cryptographic Assumptions

Within this paper, is an exponential (e.g., ⇡ 128) security parameter. We
denote f() ⇡

f 0(), if |f()� f 0()| = �!(1). A function f() is negligible, if
f() ⇡

0. For any , we assume that factoring ⌧()-bit integers is intractable.

6 Helger Lipmaa

Strong RSA. We say that the Strong RSA assumption [3] holds, if given a
product N = pq of two randomly chosen ⌧()/2-bit safe primes p = 2p0 + 1 and
q = 2q0 + 1, and y

r

Z⇤
N

, it is computationally di�cult to output (x, e), such
that e > 1 and y ⌘ xe mod N .

DCR [32,11]. Let N = pq be a product of two ⌧()/2-bit random safe primes
p = 2p0 + 1 and q = 2q0 + 1. Let N 0 = p0q0. Let s � 1. Write G := Z⇤

N

s+1
⇠=

G
N

s �G
N

0 �G
2

� T , where ⇠= indicates group isomomorphism, � is the direct
sum or Cartesian product, G

i

are cyclic groups of order i, and T is the order-2
cyclic group generated by �1 mod Ns+1. Let X := P := J

N

s+1 ⇠= G
N

s�G
N

0�T ,
X0 := P0 := Q

N

s+1 ⇠= G
N

s �G
N

0 , and L ⇠= G
N

0 be multiplicative groups.
Let g be a random generator of L; g can be thought of as a random 2Ns-th

residue. It can be computed by choosing a random µ
r

Z
N

s+1 and then setting
g µ2N

s

mod Ns+1.
A witness w 2 W := Z for x 2 L is such that x ⌘ gw (mod Ns+1). Finally,

let g? be an arbitrary generator of the cyclic group G
N

s (for example g? =
1 +N 2 Z

N

s+1). We set ⇤ = (N, s, g, g?).
The Decisional Composite Residuosity (DCR, [32]) assumption says that it

is di�cult to distinguish random elements of L from random elements of X.
We remark that we cannot sample uniform witnesses as W = Z is infinite.

From a mathematical standpoint, we could have set W = Z
N

0 , but we cannot do
that here, as computing N 0 from ⇤ requires to factorize N . Instead, we sample
witnesses uniformly fromW⇤

N

:= ZbN/4c. This is satistically close to uniform over
Z
N

0 as: SD(U(Z
N

0), U(W⇤
N

)) = 1 � p0q0/(pq/4) = (2p0 + 2q0 + 1)/(pq) < 2(p +
q)/(pq) < 4/ lpf(N). From this distribution over W, we can derive a statistically
uniform distribution over L.

2.2 Paillier Elgamal Cryptosystem

We use the following CPA-secure double-trapdoor cryptosystem ⇧ =
(K,VK,E,D) that is based on a projective hash proof system from [11]. We
make it proof-friendly by using ideas from [14] and augment it with the VK pro-
cedure needed to get optimal culpable soundness. Following say [29], we call this
cryptosystem Paillier Elgamal. See, e.g., [14,6] for variants of this cryptosystem.

Let ⇤ = (N = pq, s, g, g?) and (p = 2p0 + 1, q = 2q0 + 1) be chosen as in
Sect. 2.1, with N 0 = p0q0. Set sk

fact

 (p, q) and sk
dl

r

W⇤
N

. Let h gskdl

mod Ns+1. Hence, g, h 2 P = J
N

s+1 . The key generator ⇧.K(⇤) returns the
public key pk := (⇤, h) and the secret key sk := (sk

fact

, sk
dl

). The message space
is equal to Mpk := Z

N

s , the ciphertext space is equal to Cpk := P2, and the
randomizer space is equal to Rpk := W⇤

N

⇥ Z
2

⇥ Z
2

.
Define VK(sk

dl

, pk) = 1 i↵ sk
dl

is the secret key, corresponding to the public
key pk. In the case of the Paillier Elgamal, VK can be evaluated e�ciently by
checking whether h ⌘ gskdl (mod Ns+1).

Define

Es

pk(m; r, t
0

, t
1

) := ((�1)t0gr, (N + 1)m(�1)t1hr) mod Ns+1 .

Optimally Sound Sigma Protocols Under DCRA 7

Here, t
0

and t
1

are only needed for the sake of constructing zero knowledge
proofs, to obtain soundness also in the case when g 62 Q

N

s+1 or h 62 Q
N

s+1 . By
default, one just sets t

0

= t
1

= 0.
Given a ciphertext C = (C

1

, C
2

), the decryption algorithm Ds

skdl
(C) first

checks that C
1

, C
2

2 P = J
N

s+1 and rejects otherwise. Second, it computes
(N + 1)2m = (C

2

/Cskdl
1

)2 mod Ns+1, and then retrieves m from this by using
the algorithm described in [13]. ⇧ is IND-CPA secure under the DCR assump-
tion, [11].

The Paillier Elgamal cryptosystem is additively homomorphic, since
Es

pk(m1

; r
1

, t
01

, t
11

)·Es

pk(m2

; r
2

, t
02

, t
12

) = Es

pk(m1

+m
2

; r
1

+r
2

, t
01

�t
11

, t
02

�t
12

).
Moreover, it is blindable, since for r0

r

W⇤
N

, t
b0

r

Z
2

and t
b1

r

Z
2

,
Es

pk(m; r, t
0

, t
1

) ·Es

pk(0; r
0; t

b0

, t
b1

) = Es

pk(m; r+r0, t
0

+t
b0

mod 2, t
1

+t
b1

mod 2)
is a (close to uniformly) random encryption of m.

This cryptosystem has two statistically independent trapdoors, sk
fact

= (p, q)
and sk

dl

. To decrypt (C
1

, C
2

), it su�ces to have either. However, in some applica-
tions N can be generated in a highly secure environment so that its factorization
is not known to anybody. Alternatively, one can create a huge N randomly, so
that with a high probability it is guaranteed that N has large factors, [33]. Many
di↵erent parties can then have N as a part of their public key (without knowing
the factorization), and generate their own trapdoor sk

dl

. A natural application is
threshold encryption, where the factorization of N is only known by a threshold
of the parties, while each party has their own sk

dl

; see [14].

2.3 ⌃ Protocols

Let R = {(x,w)} be a polynomial-time verifiable relation, and let LR = {x :
(9w)(x,w) 2 R}, where w has polynomial length.

A ⌃-protocol [10] S is a three-message protocol between the prover S.P and
the verifier S.V, where the first and the third messages are send by the prover,
and the second message is a uniformly random message e

r

Z
2

 chosen by
the verifier. The prover S.P and the verifier S.V are two e�cient algorithms
that have a common input x. Additionally, the prover knows a secret witness
w. At the end of the ⌃ protocol, the verifier either accepts (x 2 LR) or rejects
(x 62 LR). We will implicitly assume that the three messages of S belong to some
sets whose memberships can be e�ciently tested.

In addition, we require the ⌃ protocol to have a linear answer [12].

Definition 1. A ⌃ protocol with a linear answer for an NP-relation R that
consists of three messages and of the verifier’s decision algorithm defined by a
pair (S.P,S.V) of e�cient algorithms as follows:
1. (c

a

, z
1

, z
2

) S.P(x;w), where z
1

and z
2

are two m-dimensional vectors
for some m. Here, c

a

is the first message sent by the prover to the verifier.
2. The second message is e

r

Z
2

 , chosen by the verifier randomly, and sent
to the prover.

3. The third message is z ez
1

+ z
2

, sent by the prover to the verifier.

8 Helger Lipmaa

4. Finally, the verifier outputs S.V(x; c
a

, e, z) 2 {0, 1}, that is, the verifier
either accepts or rejects.

Here, (x, c
a

, e, z) is called the (real) view of the ⌃ protocol. Thus, the verifier
either rejects or accepts the view. In the latter case, the view is said to be
accepting (for S).

A ⌃ protocol S with a linear answer for relation R is perfectly complete, if
for every (x,w) 2 R and every (c

a

, z
1

, z
2

) 2 S.P(x;w) and e 2 {0, 1}, it holds
that S.V(x; c

a

, e, ez
1

+ z
2

) = 1.
A ⌃ protocol S with a linear answer for relation R is perfectly (resp., sta-

tistically) special honest-verifier zero knowledge [10], if there exists an e�cient
simulator S.sim that inputs x and e 2 {0, 1}, and outputs (c

a

, z), such that
(x, c

a

, e, z) is accepting, and moreover, if e is a uniform random element of
{0, 1}, then (x, c

a

, e, z) has the same (resp., is negligibly di↵erent from the)
distribution as the real view of S.

A ⌃ protocol S with a linear answer is specially sound [10] for R if, given
two accepting views (x, c

a

, e, z) and (x, c
a

, e0, z0) with the same (x, c
a

) but with
e 6= e0, one can e�ciently recover a witness w, such that (x,w) 2 R. A ⌃ protocol
is computationally specially sound for R if it is specially sound for R under a
computational assumption.

Consider any input x (possibly x 62 LR) and any c
a

. Then e 2 {0, 1} is a
good challenge [12] for a ⌃ protocol S, if there exists a z such that (x, c

a

, e, z)
is an accepting view for S.

Definition 2 (Optimal Soundness). A ⌃ protocol S is optimally sound [30]
(also known as relaxed specially sound [12]) for R, if for any x 62 LR and any
purported first message c

a

, there exists at most one good e 2 {0, 1} for S.

We note that in some ⌃ protocols it will be important not to allow e to fall
outside of {0, 1}. For example, it can be the case that if e is good, then also
e + p is good, where p > 2 is a non-trivial factor of N . There will be at most
one good e < 2 under the assumption that lpf(N) > 2.

To make the definition of optimal soundness compatible with culpable sound-
ness, Chaidos and Groth [8] modified it as follows. (In [8] , this property was
called soundness with uniquely identifiable challenge using relation Rguilt.) We
note that di↵erently from [8], we only require the extractor to return e, if it
exists; as we will show, there are cases where such e is not available.

Definition 3 (Optimal culpable soundness). For a relation R, let Rguilt =
{(x,w)} be a polynomial-time verifiable relation, where it is required that x 62 LR
if (x,w) 2 Rguilt for some w. A ⌃ protocol S has optimal culpable soundness us-
ing relationRguilt forR, if (i) it is optimally sound for R, and (ii) there exists an
e�cient algorithm S.EX, such that if (x,w

guilt

) 2 Rguilt then S.EX
wguilt(x, ca)

returns the unique good e where c
a

is a first message returned by S.P.

It is claimed in [12] that every specially sound ⌃ protocol is optimally sound.
As we will show in Sect. 2.3, an even stronger claim holds: there exist cases where

Optimally Sound Sigma Protocols Under DCRA 9

1. S.P(pk,C; (r 2 ZbN/4c, b0 2 Z2, b1 2 Z2)) does the following:
(a) Set ra r Z22bN/4c, t0 r Z2, t1 r Z2,
(b) Set ca Es

pk(0; ra, t0, t1),
(c) Return (ca, z1 (r, b0, b1), z2 (ra, t0, t1)).
The prover’s first message is ca.

2. The verifier’s second message is e r Z2 .
3. The prover sets rb er + ra, tb0 eb0 + t0 mod 2, tb1 eb1 + t1 mod 2, and

outputs z (rb, tb0, tb1) as the third message.
4. The verifier S.V(pk,C; ca, e, z) checks that

(a) C, ca 2 P2 = J2
Ns+1 ,

(b) z = (rb, tb0, tb1), where rb 2 Z(22+2�1)bN/4c�2+1, tb0 2 Z2, tb1 2 Z2,
(c) the following holds:

(Ceca · Es
pk(0; rb, 0, 0)

�1)2 ⌘ 1 (mod Ns+1) . (1)

Fig. 1. ⌃ protocol for Zero

the ⌃ protocol is computationally specially sound (for example, one needs to
rely on the Strong RSA assumption [3]) and unconditionally optimally culpably
sound and thus also unconditionally optimally sound.

3 New Optimally Culpably Sound ⌃-Protocols

Let ⇧ = (K,VK,E,D) be the double-trapdoor additively homomorphic cryp-
tosystem from Sect. 2.2. We next describe two simple ⌃ protocols about the
plaintext of a ⇧ ciphertext that both satisfy optimal culpable soundness using
a naturally defined relation Rguilt where the witness is just the secret key sk

dl

of ⇧. Close variants of these ⌃-protocols also work with the DCR-based cryp-
tosystems from [13,14,6]; see, e.g., [26]. Basing the ⌃ protocols on ⇧ (and not,
say, on the cryptosystem from [13]) makes it easier to pinpoint some di↵erences
between the special soundness and the optimal culpable soundness.

3.1 ⌃-Protocol for Zero

Consider the following ⌃ protocol, see Fig. 1, with linear answer for the relation

RZero = {((pk,C), (r, b
0

, b
1

)) : C = Es

pk(0; r, b0, b1)} .

That is, a honest verifier accepts i↵ C encrypts to 0.

Theorem 1. Let ⇧ be the Paillier Elgamal cryptosystem. The ⌃ protocol of
Fig. 1 has linear answer, is perfectly complete, and statistically special HVZK.
Assume pk is a valid public key. Then this ⌃ protocol is computationally specially
sound for R under the Strong RSA assumption [3].

Proof. First, clearly, r
b

 (22 + 2 � 1) bN/4c � 2.

10 Helger Lipmaa

Linear answer property: straightforward.
Perfect completeness: straightforward. If the prover is honest, we have

(Cec
a

· Es

pk(0; rb, 0, 0)
�1)2 ⌘ Es

pk(0; er + r
a

� (er + r
a

), eb
0

+ t
0

mod 2, eb
1

+ t
1

mod 2))2 ⌘ Es

pk(0; 0, 0, 0) = 1 (mod Ns+1).
Statistical special HVZK: the simulator S.sim(x, e) first sets z

Z
2

2bN/4c, t
0

r

Z
2

, t
1

r

Z
2

, and then c
a

 Es

pk(0; z, t0, t1)/C
e. Clearly,

if e
r

Z
2

 , then due to the choice of r
a

, z is statistically close to z in the
real protocol. Moreover, in both real and simulated protocols, c

a

is defined by
((pk,C), e, z) and the verification equation.

Computational special soundness: From two accepting views (c
a

, e, z =
(r

b

, t
b0

, t
b1

)) and (c
a

, e0, z0 = (r0
b

, t0
b0

, t0
b1

)) with e 6= e0 and Eq. (1), we get that

C2(e�e

0
) ⌘Es

pk(0; 2(rb � r0
b

), 0, 0) ⌘ (g2(rb�r

0
b), h2(rb�r

0
b)) (mod Ns+1) . (2)

To recover from this the witness r = (r
b

� r0
b

)/(e � e0) mod '(N), we have to
compute (r

b

� r0
b

)/(e� e0) modulo '(N), without knowing '(N). We show that
one can either recover r, or break the Strong RSA assumption.

First, if (e � e0) | (r
b

� r0
b

) over Z, then we set r (r
b

� r0
b

)/(e � e0), and
we are done: C2 = Es

pk(0; 2r, 0, 0) and thus C = Es

pk(0; r, b0, b1) for e�ciently
recoverable b

0

and b
1

.
Second, assume (e � e0) - (r

b

� r0
b

) over Z. In this case, let � gcd(2(e �
e0), 2(r

b

� r0
b

)), y
e

r

2(e� e0)/�, and y
b

 2(r
b

� r0
b

)/�. According to Eq. (2),

C
2(e�e

0
)

1

⌘ g2(rb�r

0
b) (mod Ns+1), and thus also (�1)t0Cye

1

⌘ gyb (mod Ns+1)
for e�ciently computable t

0

2 Z
2

. Since gcd(y
b

, y
e

) = 1, we can use the extended
Euclidean algorithm to compute integers ⌧

b

and ⌧
e

, such that ⌧
b

y
b

+ ⌧
e

y
e

= 1.
Thus,

g =g⌧byb+⌧eye = g⌧bybg⌧eye ⌘ (�1)⌧bt0C⌧bye
1

g⌧eye

=(�1)⌧bt0(C⌧b
1

g⌧e)ye (mod Ns+1) .

Since y
e

> 1, then this means that we have found a non-trivial root (C⌧b
1

g⌧e

mod Ns+1, y
e

) of (�1)⌧bt0g modulo Ns+1, and thus also modulo N , and thus
broken the Strong RSA assumption. ut

Next, we will show that the same ⌃-protocol from Fig. 1 has optimal culpable
soundness using the relation

Rguilt

Zero =

(
((pk,C), sk

dl

) : C 2 P2 ^ Ds

skdl(C) 6= 0^
VK(sk

dl

, pk) = 1

)
(3)

without relying on any computational assumptions. Here, w
guilt

is equal to sk
dl

;
hence, the extractor S.EX gets sk

dl

as the secret input.

Theorem 2. Let ⇧ be the Paillier Elgamal cryptosystem. Assume that
lpf(N) > 2. Then the ⌃ protocol S from Fig. 1 has optimal culpable sound-
ness using Rguilt

Zero.

Optimally Sound Sigma Protocols Under DCRA 11

S.EXs
skdl

((pk,C), ca) :
1. If C 62 P2 or ca 62 P2: return “reject”;
2. If VK(skdl, pk) = 0: return “reject”;
3. Let m Ds

skdl
(C); Let ma Ds

skdl
(ca);

4. If m ⌘ 0 (mod Ns): return “accept”; /* prover was honest */
5. Let � gcd(m,Ns);
6. Let m̄ m/�; Let m̄a ma/�; Let N̄s Ns/�;
7. e �m̄a/m̄ mod N̄s;
8. If e < 2: return e;
9. else: return “no accepted challenges”;

Fig. 2. Extractor from Thm. 2 for the ⌃ protocol from Fig. 1 for Rguilt
Zero

Proof. Consider the extractor in Fig. 2 that either returns “reject” (if C is not
a valid ciphertext or VK(sk

dl

, pk) does not hold; in such cases S.V also rejects),
“accept” (the prover was honest), or the good challenge (if it exists) together
with a non-trivial factor of N .

We will now argue that this extractor functions as claimed. First, from the
Eq. (1) of the ⌃ protocol in Fig. 1 it follows that

2(em+m
a

) ⌘ 0 (mod Ns) , (4)

where m is the plaintext in C and m
a

is the plaintext in c
a

. Since the verification
accepts and N is odd, em ⌘ �m

a

(mod Ns).
If m ⌘ 0 (mod Ns), then the prover is honest. Otherwise, setting �

gcd(m,Ns), we can retrieve an e that satisfies Eq. (4), given such an e exists.
Really, if a good challenge e exists then 2(em + m

a

) ⌘ 0 (mod Ns), and thus
em+m

a

⌘ 0 (mod Ns). Hence, m̄e+ m̄
a

⌘ 0 (mod N̄
s

), and thus e ⌘ �m̄
a

/m̄
(mod N̄

s

). Since a good challenge is smaller than 2, it is also smaller than N̄
s

,
and thus computing e modulo N̄

s

= Ns/� does not throw away any information.
Since em̄� + m

a

⌘ 0 (mod Ns) and � | Ns, we get m
a

⌘ 0 (mod �) and thus
� | m

a

. ut

3.2 ⌃ Protocol for Boolean

Consider the following ⌃ protocol, see Fig. 3, with linear answer for the relation

RBoolean = {((pk,C), (m, r)) : C = Es

pk(m; r, b
0

, b
1

) ^m 2 {0, 1}} .

That is, a honest verifier accepts i↵ C encrypts to either 0 or 1. This ⌃ protocol
is derived from the ⌃ protocol from [8] where it was stated for prime modulus
only.

Theorem 3. The ⌃ protocol (Boolean Proof) of Fig. 3 has linear answer, and
it is perfectly complete and statistically special HVZK. Assume that the Strong
RSA assumption [3] holds, pk is a valid public key, and lpf(Ns) > 2. Then this
⌃ protocol is computationally specially sound.

12 Helger Lipmaa

1. S.P(pk,C;m 2 Z2, (r 2 ZbN/4c, b0 2 Z2, b1 2 Z2)) does the following:
(a) Let ma 22+1 + U(Z22), ra r Z22bN/4c, rb r Z23bN/4c;
(b) Let ta0, ta1, tb0, tb1, tc0, tc1 r Z2;
(c) Let ca Es

pk(ma; ra, ta0, ta1), cb Es
pk(�mma; rb, tb0, tb1);

(d) Return ((ca, cb), z1 = (m, r, r(m�1), b0, b1), z2 = (ma, ra, rma+rb), tc0, tc1).
The prover’s first message is (ca, cb).

2. The verifier’s second message is e r Z2 ,
3. The prover’s third message is z = (zm, za, zb, td0, td1), where zm em + ma,

za er+ ra, zb er(m� 1)+ rma + rb, td0 eb0 + tc0 mod 2, td1 eb1 + tc1
mod 2.

4. The verifier checks that
(a) C, ca, cb 2 P2 = J2

Ns+1 ,
(b) zm 2 Z3·22+2�1, za 2 Z(22+2�1)bN/4c�2+1,
(c) zb 2 Z(23+3·22�1)·bN/4c�3·22+1, td0 2 Z2, td1 2 Z2,

(d) the following holds:

(Ceca · Es
pk(zm; za, 0, 0)

�1)2 ⌘1 (mod Ns+1) ,

(Czm�ecb · Es
pk(0; zb, 0, 0)

�1)2 ⌘1 (mod Ns+1) . (5)

Fig. 3. ⌃ protocol for Boolean

Proof. Clearly, in the honest case, z
b

= r(z
m

� e) + r
b

. The choice of m
a

guar-
antees that z

b

� 0. Now,

z
m

=em+m
a

 (2 � 1) + (22+1 + 22 � 1) = 3 · 22 + 2 � 2 ,

z
a

=er + r
a

 (2 � 1)(bN/4c � 1) + (22 bN/4c � 1)

=(22 + 2 � 1) bN/4c � 2 ,

and (here we need that m
a

> e)

z
b

=er(m� 1) + rm
a

+ r
b

(2 � 1)(bN/4c � 1) · 0 + (bN/4c � 1)(22+1 + 22 � 1) + (23 bN/4c � 1)

=
�
23 + 3 · 22 � 1

�
· bN/4c � 3 · 22 .

Linear answer: straightforward. Completeness: let t
ei

= b
i

(m
a

+ e(m�
1)) + t

bi

for i 2 {0, 1}. Eq. (5) holds since

Czm�ec
b

⌘Es

pk((em+m
a

� e)m�mm
a

; r(z
m

� e) + r
b

, t
e0

, t
e1

)

⌘Es

pk(e(m� 1)m; z
b

, t
e0

, t
e1

) ⌘ Es

pk(0; zb, te0, te1) ,

if m 2 {0, 1}. Thus, C2(zm�e)c2
b

⌘ Es

pk(0; 2zb, 0, 0) if m 2 {0, 1}. Other verifica-
tions are straightforward.

Statistical special HVZK: Given e 2 Z
2

 , the simulator gen-
erates z

m

r

22+1 + U(Z
2

2), z
a

r

Z
2

2bN/4c, z
b

r

Z
2

3bN/4c,
and t

a0

, t
a1

, t
b0

, t
b1

, t
d0

, t
d1

r

Z
2

. He sets z (z
m

, z
a

, z
b

, t
d0

, t
d1

),

Optimally Sound Sigma Protocols Under DCRA 13

c
a

 Es

pk(zm; z
a

, t
a0

, t
a1

)/Ce mod Ns+1 and c
b

 Es

pk(0; zb, tb0, tb1)/C
zm�e

mod Ns+1, and returns (pk,C; (c
a

, c
b

), e, z) as the view. Clearly, both in the
real and simulated proof, c

a

and c
b

are fixed by (pk,C; e, z) and the verification
equations. Moreover, given that e

r

Z
2

 , the simulated z
m

, z
a

, z
b

, t
d0

, t
d1

are
statistically close to the values in the real proof.

Special Soundness: Assume that the verifier accepts two views
(pk,C; c

a

, c
b

, e, z) and (pk,C; c
a

, c
b

, e0, z0) for e 6= e0. From the first equality
in Eq. (5) we get that

C2(e�e

0
) ⌘ Epk(2(zm � z0

m

); 2(z
a

� z0
a

), 0, 0) . (6)

Hence, C encrypts m := (z
m

� z0
m

)/(e � e0) mod Ns. (Here, we use the fact
that e, e0 2 Z

2

 < lpf(Ns), e 6= e0, and thus e � e0 is invertible.) To recover
the randomizer used in encrypting C, we use the same technique as in the
proof of Thm. 1: we either obtain that (e � e0) | (z

a

� z0
a

) (in this case, we set
r (z

a

� z0
a

)/(e� e0)), or we break the Strong RSA assumption. Similarly, we
obtain the randomizers b

0

and b
1

that were used when computing C.
From the second equality in Eq. (5) holds, we get that

C2(zm�z

0
m)�2(e�e

0
) ⌘Es

pk(0; 2(zb � z0
b

), 0, 0) (mod Ns+1) ,

and thus, when combining it with Eq. (6),

Es

pk(2(zm � z0
m

)m; 2(z
m

� z0
m

)r, 0, 0)

⌘Es

pk(2(zm � z0
m

); 2(z
a

� z0
a

+ z
b

� z0
b

), 0, 0) (mod Ns+1) ,

Since z
m

� z0
m

⌘ (e� e0)m (mod Ns), we get after decrypting that

2(e� e0)m2 ⌘ 2(e� e0)m (mod Ns) .

Since gcd(e� e0, Ns) = 1, m mod Ns 2 {0, 1}. ut

Next, we show that this ⌃ protocol has optimal culpable soudness using the
guilt relation

Rguilt

Boolean =

(
((pk,C), sk

dl

) : C 2 P2 ^ Ds

skdl(C) 62 {0, 1}^
VK(sk

dl

, pk) = 1

)
. (7)

Theorem 4. Let ⇧ be the Paillier Elgamal cryptosystem, and let lpf(N) > 2

(thus also 2 - N). Then the ⌃ protocol of Fig. 3 has optimal culpable soundness
using Rguilt

Boolean.

Proof. We prove the optimal culpable soundness as in Thm. 2. The main new
complication is that there can now be two strategies of cheating: it can be that
either gcd(m,Ns) > 1 or gcd(m � 1, Ns) > 1, so the extractor has to test for
both. We thus construct the following extractor, see Fig. 4.

14 Helger Lipmaa

S.EXskdl(C, ca, cb):
1. If C 62 P2 or ca 62 P2 or cb 62 P2: return “reject”;
2. If VK(skdl, pk) = 0: return “reject”;
3. Let m Ds

skdl
(C);

4. Let ma Ds
skdl

(ca), mb Ds
skdl

(cb);
5. Let m⇤ (m� 1)m mod Ns;
6. If m⇤ ⌘ 0 (mod Ns): return “accept”;
7. else if m⇤ 2 Z⇤

Ns : let e �(mma +mb)/m
⇤ mod Ns;

8. else if gcd(m,Ns) > 1:
(a) Let � gcd(m,Ns);
(b) Let m̄ m/�; m̄b mb/�, m̄

⇤ m⇤/�; N̄s Ns/�;
(c) Let e r �(mam̄+ m̄b)/m̄

⇤ mod N̄s;
9. else: /* gcd(m� 1, Ns) > 1 */

(a) Let � gcd(m� 1, Ns);
(b) Let m̄1 (m� 1)/�, m̄ab (ma +mb)/�, m̄

⇤ m⇤/�, N̄s Ns/�;
(c) Let e r �(mam̄1 + m̄ab)/m̄

⇤ mod N̄s;
10. If e < 2: return e;
11. else: return “no accepted challenges”;

Fig. 4. Extractor in Thm. 4 for Rguilt
Boolean

Let m⇤ := (m� 1)m mod Ns. From the verification equalities in Eq. (5) we
get that z

m

⌘ em + m
a

(mod Ns) and (z
m

� e)m + m
b

⌘ 0 (mod Ns), thus
(em+m

a

� e)m+m
b

⌘ 0 (mod Ns), and thus

em⇤ ⌘ �(m
a

m+m
b

) (mod Ns) . (8)

Clearly, the constructed extractor works correctly. If m⇤ ⌘ 0 (mod Ns) or
m⇤ ⌘ 1 (mod Ns), then the prover was honest. Otherwise, if m⇤ 2 Z⇤

N

s , then
one can recover e from Eq. (8) e�ciently. Otherwise, if gcd(m⇤, Ns) > 1, we
have either gcd(m,Ns) > 1 or gcd(m � 1, Ns) > 1. Those two possibilities are
mutually exclusive, since gcd(m,m� 1) = 1.

In the case � = gcd(m,Ns) > 1, we can divide the left hand side and right
hand side of Eq. (8) by �, and obtain e mod (Ns/�) as in Fig. 4, line 8c. This is
possible since in this case, from Eq. (8) we get that e(m�1)m̄� ⌘ �(m

a

m̄�+m
b

)
(mod Ns) and hence m

b

⌘ 0 (mod �) and � | m
b

. Since e < 2 < lpf(N), we
have obtained e.

In the case � = gcd(m�1, Ns) > 1, we can divide the left hand side and right
hand side of Eq. (8) by �, and obtain e mod (Ns/�) as in Fig. 4, line 9c.. This
is possible since in this case, we can rewrite Eq. (8) as e(m� 1)m ⌘ �(m

a

(m�
1) +m

a

+m
b

) (mod Ns). Thus, we get that em̄
1

�m ⌘ �(m
a

m̄
1

� +m
a

+m
b

)
(mod Ns) and hence m

a

+m
b

⌘ 0 (mod �) and � | (m
a

+m
b

). Since e < 2 <
lpf(N), we have obtained e.

This finishes the proof. ut

Optimally Sound Sigma Protocols Under DCRA 15

3.3 ⌃ Protocol for Circuit-SAT

To construct a ⌃ protocol for the NP-complete language Circuit-SAT, it suf-
fices to construct a ⌃ protocol for Boolean [8]. Really, each circuit can be
represented only by using NAND gates, and a NAND b = c i↵ a+ b+ 2c� 2 2
{0, 1} [23].

One hence just has to prove that (i) each input and wire value is Boolean,
and (ii) each gate is correctly evaluated. According to [15], each test in step ii
can be reformulated as a Boolean test. Hence, it is su�cient to run m + n ⌃
protocols for Boolean in parallel, where m is the summatory number of the
inputs and the wires, and n is the number of gates. See [8] for more information.

3.4 General Idea

In both covered cases (Zero and Boolean), we constructed ⌃ protocols that
were specially sound and HVZK, and then applied the following idea to obtain
optimal culpable soundness. We expect the same idea to work also in general.

Let L ⇢ Cn
pk be a language about the ciphertexts of ⇧ that naturally defines

a language L
M

⇢Mn
pk about the plaintexts. For example, in the case L = Zero,

L
M

= {0}. Let R = {(x,w) : x 2 L} and, for some n,

Rguilt =

(
(x = (pk,C, sk

dl

) : C 2 Cn
pk ^ (C

i

)n
i=1

62 LR^
VK(sk

dl

, pk) = 1

)
. (9)

The general idea is to construct a ⌃-protocol with the following property. If the
prover is cheating, then for each first message c

a

there is at most one good e.
Moreover, this e can be computed as e = e

1

/e
2

, where either e
2

is invertible
modulo Ns or e

2

/� is invertible modulo Ns/�, where � is the greatest common
divisor of Ns and some function f(m) of m 62 L

M

such that f(m) 6= 0.

Acknowledgments. We would like to thank Jens Groth, Ivan Visconti and
anonymous reviewers for insightful comments. The authors were supported by
the European Union’s Horizon 2020 research and innovation programme un-
der grant agreement No 653497 (project PANORAMIX), and by institutional
research funding IUT2-1 of the Estonian Ministry of Education and Research.

References

1. Abe, M., Fehr, S.: Perfect NIZK with Adaptive Soundness. In: TCC 2007. LNCS,
vol. 4392, pp. 118–136

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally Composable Protocols
with Relaxed Set-Up Assumptions. In: FOCS 2004, pp. 186–195

3. Barić, N., Pfitzmann, B.: Collision-Free Accumulators and Fail-Stop Signature
Schemes without Trees. In: EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494

4. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing
E�cient Protocols. In: ACM CCS 1993, pp. 62–73

16 Helger Lipmaa

5. Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Ap-
plications. In: STOC 1988, pp. 103–112

6. Bresson, E., Catalano, D., Pointcheval, D.: A Simple Public-Key Cryptosystem
with a Double Trapdoor Decryption Mechanism and Its Applications. In: ASI-
ACRYPT 2003. LNCS, vol. 2894, pp. 37–54

7. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited.
In: STOC 1998, pp. 209–218

8. Chaidos, P., Groth, J.: Making Sigma-Protocols Non-interactive Without Random
Oracles. In: PKC 2015. LNCS, vol. 9020, pp. 650–670

9. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A Transform for NIZK
Almost as E�cient and General as the Fiat-Shamir Transform Without Pro-
grammable Random Oracles. In: TCC 2016-A (2). LNCS, vol. 9563, pp. 83–111

10. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In: CRYPTO 1994. LNCS, vol.
839, pp. 174–187

11. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: EUROCRYPT 2002. LNCS, vol.
2332, pp. 45–64

12. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive Zero-Knowledge from Homo-
morphic Encryption. In: TCC 2006. LNCS, vol. 3876, pp. 41–59

13. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-Key System. In: PKC 2001. LNCS, vol. 1992, pp.
119–136

14. Damg̊ard, I., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Appli-
cations. In: ACISP 2003. LNCS, vol. 2727, pp. 350–364

15. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square Span Programs with
Applications to Succinct NIZK Arguments. In: ASIACRYPT 2014 (1). LNCS, vol.
8873, pp. 532–550

16. Fauzi, P., Lipmaa, H.: E�cient Culpably Sound NIZK Shu✏e Argument without
Random Oracles. In: CT-RSA 2016. LNCS, vol. 9610, pp. 200–216

17. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: CRYPTO 1986. LNCS, vol. 263, pp. 186–194

18. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and
NIZKs without PCPs. In: EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645

19. Goldwasser, S., Kalai, Y.T.: On the (In)security of the Fiat-Shamir Paradigm. In:
FOCS 2003, pp. 102–113

20. Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant
Size Group Signatures. In: ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459

21. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:
ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340

22. Groth, J., Lu, S.: A Non-interactive Shu✏e with Pairing Based Verifiability. In:
ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67

23. Groth, J., Ostrovsky, R., Sahai, A.: New Techniques for Noninteractive Zero-
Knowledge. Journal of the ACM 59(3) (2012)

24. Groth, J., Sahai, A.: E�cient Non-interactive Proof Systems for Bilinear Groups.
In: EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432

25. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their
Applications. In: EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154

26. Jurik, M.J.: Extensions to the Paillier Cryptosystem with Applications to Cryp-
tological Protocols. PhD thesis, University of Aarhus, Denmark (2003)

Optimally Sound Sigma Protocols Under DCRA 17

27. Lindell, Y.: An E�cient Transform from Sigma Protocols to NIZK with a CRS
and Non-programmable Random Oracle. In: TCC 2015 (1). LNCS, vol. 9014, pp.
93–109

28. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments. In: TCC 2012. LNCS, vol. 7194, pp. 169–189

29. Malkin, T., Teranishi, I., Yung, M.: E�cient Circuit-Size Independent Public Key
Encryption with KDM Security. In: EUROCRYPT 2011. LNCS, vol. 6632, pp.
507–526

30. Micciancio, D., Petrank, E.: Simulatable Commitments and E�cient Concurrent
Zero-Knowledge. In: EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159

31. Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Fac-
toring. In: EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318

32. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238

33. Sander, T.: E�cient Accumulators without Trapdoor. In: ICICS 1999. LNCS, vol.
1726, pp. 252–262. ISBN 3-540-66682-6.

34. Ventre, C., Visconti, I.: Co-sound Zero-Knowledge with Public Keys. In:
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 287–304

A Preliminaries: DFN

A.1 RPK Model

In the registered public key (RPK, [2]) model, we assume that everybody has
an access to a key registration functionality F

kr

. A party (say, Alice) generates
her public and secret key pair, and then sends both (together with used random
coins) to F

kr

, who verifies that the keys were created correctly (this means that
to register her public key, Alice must know the corresponding private key), and
then stores the public key together with Alice’s identity in a repository.

Later, Bob (for this, it is not necessary for Bob to register his public key) can
query F

kr

and then retrieve the public key of Alice together with a corresponding
certificate. On the other hand, in security proofs, we may give an adversary
control over F

kr

, enabling access not only to the public but also to the secret
key of Alice. While every party can use a di↵erent F

kr

, all parties need to trust
F
kr

of other parties in the following sense. F
kr

guarantees that
(i) the public keys of uncorrupted parties are safe (the corresponding secret

key is chosen randomly, and kept secret from the adversary), and
(ii) the public keys of corrupted parties are well-formed (the functionality has

seen the corresponding secret key).
Hence, Alice must trust her F

kr

to do key registration correctly, and Bob must
trust that Alice’s F

kr

has verified that Alice knows the corresponding secret key.
As noted in [2,12], one can make this model more realistic by letting Alice

to send her public key to F
kr

and then give an interactive zero knowledge proof
that she knows the corresponding private key. In the security proof, we can then
construct an adversary who rewinds Alice to extract her private key.

18 Helger Lipmaa

A.2 NIDVZK Argument Systems

In a non-interactive designated verifier zero knowledge (NIDVZK, [8]) argument
system in the RPK model, the verifier has a public key Z.pk and a corresponding
secret key Z.sk specific to this argument system, that she has set up by using
a trusted functionality F

kr

. An NIDVZK argument system Z consists of the
following three e�cient algorithms:
Z.G(1): generates, registers (by using F

kr

), and then returns a key pair
(Z.sk,Z.pk).

Z.P(Z.pk, x, w): given a public key Z.pk obtained from F
kr

, an input x and a
witness w, returns a proof ⇡.

Z.V(Z.sk, x,⇡): given a secret key, an input x, and a proof ⇡, returns either 1
(accept) or 0 (reject).
Next, Z = (Z.G,Z.P,Z.V) is an NIDVZK argument system5 for R with

culpable soundness for Rguilt, if it is perfectly complete, culpably sound [23]
for Rguilt, and statistically (or computationally) composable zero knowledge,
given that the parties have access to the certified public key of the verifier. More
precise definitions follow.

Let `
x

() be a polynomial, such that (common) inputs of length `
x

() cor-
respond to security parameter . Then let R

= {(x,w) : bitlength(x) = `
x

()}
and LR,

= {x : (9w)(x,w) 2 R

}, where again w has polynomial length.
Z is perfectly complete, if for all 2 N, all (x,w) 2 R

, and all (Z.sk,Z.pk) 2
Z.G(1), Z.V(Z.sk, x,Z.P(Z.pk, x, w)) = 1.

In our constructions we will get zero-knowledge even if the adversary knows
the secret verification key. This strong type of zero-knowledge is called com-
posable zero-knowledge in [20] due to it making composition of zero-knowledge
arguments easier. More precisely, it is required that even an adversary who knows
the secret key (or trapdoor, in the CRS model) cannot distinguish between the
real and the simulated argument, [20].

Definition 4. Z is computationally composable zero-knowledge if there exists
an e�cient simulator Z.sim, such that for all probabilistic polynomial-time state-
ful adversaries A,

Pr

2

6664

(Z.sk,Z.pk) Z.G(1),

(x,w) A(Z.sk,Z.pk),

⇡ Z.P(Z.pk, x, w) :

(x,w) 2 R ^A(⇡) = 1

3

7775
⇡

Pr

2

6664

(Z.sk,Z.pk) Z.G(1),

(x,w) A(Z.sk,Z.pk),

⇡ Z.sim(Z.sk, x) :

(x,w) 2 R ^A(⇡) = 1

3

7775
.

Z is statistically composable zero-knowledge if this holds for all (not necessar-
ily e�cient) adversaries A. A statistically composable zero-knowledge argument
system is perfectly composable, if ⇡

can be replaced with = (i.e., the above two
probabilities are in fact equal).

5 We recall that an argument system is a proof system where soundness only holds
against e�cient adversaries.

Optimally Sound Sigma Protocols Under DCRA 19

In the case of culpable soundness [23], we only consider false statements
from some language L

guilt

✓ L characterized by a relation Rguilt. We require a
successfully cheating prover to output, together with an input x and a successful
argument ⇡, also a guilt witness w

guilt

such that (x,w
guilt

) 2 Rguilt. That is,
we require a successful cheater to be aware of the fact that she cheated.

Formally, Z is (non-adaptively) culpably sound for Rguilt, if for all proba-
bilistic polynomial-time adversaries A,

Pr

"
(Z.sk,Z.pk) Z.G(1), (x,⇡, w

guilt

) A(Z.pk) :

(x,w
guilt

) 2 Rguilt ^ Z.V(Z.sk, x,⇡) = 1

#
⇡

0 .

Note that culpable soundness is implicitly computational (defined only w.r.t. to
an e�cient adversary), thus a culpably sound proof system is always an argument
system.

In our applications, w
guilt

will be the secret key of the cryptosystem, about
which the NIDVZK arguments are about. For example, in an NIDVZK argument
that the plaintext is 0 (or Boolean), w

guilt

is equal to the secret key that enables
to decrypt the ciphertext. Such culpable soundness is fine in many applications,
as we will discuss at the end of the current subsection.

Finally, for some % = %(), Z is %-adaptively culpably sound for Rguilt, if for
all probabilistic polynomial-time adversaries A,

Pr

"
(Z.sk,Z.pk) Z.G(1), (x,⇡, w

guilt

) AZ.V(Z.sk,·,·)(Z.pk) :

(x,w
guilt

) 2 Rguilt ^ Z.V(Z.sk, x,⇡) = 1

#
⇡

0 .

Here, the adversary is allowed to make up to % queries to the oracle Z.V.
As shown in [12], one can handle cases where the adversary has an access

to a logarithmic number of queries, simulating their answers by guessing their
answers; this still guarantees that her success probability is inverse polynomial.

On Culpable Soundness. We will prove culpable soundness [23] of argument
systems about the plaintexts of a cryptosystem by showing that if an adversary
outputs an accepting argument and the secret key sk, then she has broken an
underlying assumption. This version of culpable soundness is acceptable since
in protocols that we are interested in, there always exists a party (namely, the
verifier) who knows sk. Hence, the cheating adversary together with the verifier
can break the (non-culpable) soundness of the argument system.

Thus, such culpable soundness is very natural the RPK model, especially if
we assume that the verifier has provided an interactive zero knowledge proof of
knowledge of sk while registering it with the authority. Then, in the soundness
proof, we can just construct an adversary who first retrieves sk from the latter
zero knowledge proof, and then uses the culpable soundness adversary whom we
already have.

A.3 DFN Transform for the Paillier Elgamal Cryptosystem

Consider the DFN [12] transformation, given the Paillier Elgamal cryptosystem
⇧ = (⇧.K,VK,E,D) where the plaintext space is Z

N

s for some reasonably large

20 Helger Lipmaa

Z.G(1)

(ske, pke) ⇧.K(1)
re r U(W⇤

N)
e r Z2

ce r Es
pke

(e; re)
Z.pk (pke, ce)
Z.sk (ske, e)
Return (Z.sk,Z.pk)

Z.P(Z.pk;C;m, r, b0, b1)

// Ci = Es
pk(mi; ri, b0i, b1i)

(ca, z1, z2)
S.P(pk,C;m, r, b0, b1)

For i = 1 to n:
ri W⇤

N

czi cz1ie · Es
pke

(z2i; ri, b0i, b1i)
Return ⇡ (ca, cz)

Z.V(Z.sk;C,⇡)

Parse ⇡ = (ca, cz)
For i = 1 to n:

zi Ds
ske(czi)

Return S.V(C; ca, e, z)

Fig. 5. The DFN transform for the Paillier Elgamal cryptosystem. Here we assume
s = maxidlogN (z2i + 1)e is fixed by the description of S.P and thus known to the
verifier

s. W.l.o.g., we assume that the same cryptosystem is used to encrypt the chal-
lenge e and the witness plaintexts and the same value of s, but by using the
di↵erent secret and public keys where one secret key sk

e

is known by the verifier
and another secret key sk is (possibly) known by the prover. For the sake of
e�ciency, one could use di↵erent cryptosystems or at least di↵erent values of s
but we will avoid the general case not to clutter the notation.

This transformation assumes that the original ⌃-protocol S is has a linear
answer and optimal culpable soundness using some relation Rguilt, see Sect. 2.3.
More precisely, we assume that Rguilt is as defined by Eq. (9).

The description of the DFN transform is given in Fig. 5. The following theo-
rem and its proof follows [12,8] in its structure. The part of using the extractor
to achieve culpable soundness is from [8] while the idea of letting the constructed
adversary A

⇡

answer randomly to oracle queries goes back to [12,8]. The latter
means that we only get O(log)-adaptive soundness.

Theorem 5. Assume that S is a complete and computationally (resp., statis-
tically) special HVZK ⌃ protocol with linear answer for R that is optimally
culpably sound for Rguilt. Let ⇧ = (K,VK,E,D) be the Paillier Elgamal cryp-
tosystem. Then the NIDVZK argument system for R of Fig. 5 is %-adaptively
computationally culpably sound for Rguilt of Eq. (9) for % = O(log), and com-
putationally (resp., statistically) composable zero knowledge for R.

Proof. Adaptive culpable Soundness. We show that if a cheating prover
A

zk

returns a good challenge e0 for the NIDVZK argument system with some
probability " = �, then we can break the message recovery security of ⇧ with
probability "

⇡

= 1/(%2%)�.
For this, we note that A

zk

gets information about e from two sources, from
c
e

and from the response of the verifier to di↵erent queries. We now construct
an adversary A

⇡

that, given access to A
zk

, breaks the message recovery security
of ⇧ (where the public key Z.pk includes c

e

). It uses the extractor S.EX, who
— given that the prover is dishonest and such a challenge exists — returns the
good challenge e0.

Optimally Sound Sigma Protocols Under DCRA 21

First, the challenger uses Z.G(1) to generate a secret key Z.sk = (sk
e

, e)
and a public key Z.pk = (pk

e

, c
e

), and sends Z.pk to A
⇡

. A
⇡

then runs

AZ.V(Z.sk;·,·)
zk

(Z.pk). AssumeA
zk

replies with a tuple (x
i

,⇡
i

, w
i

). SinceA
zk

is suc-
cessful, A

⇡

emulates the verifier by replying with a random bit b. Once A
zk

stops
(say after % = ⇥(log) steps), A

⇡

chooses uniformly one tuple (x
i0 ,⇡i0 , wi0), and

then runs the extractor with the input (x
i0 , wi0), and obtains either “accept”,

or a candidate challenge e0. Then, A
⇡

outputs what the extractor outputs.
With probability 2�% = 2�⇥(log) = �⇥(1), all bits that A

⇡

chose are equal
to the bits that the verifier would have sent. Since A

zk

is successful, then with a
non-negligible probability, one of the input/argument tuples, say (x

i1 ,⇡i1 , wi1),
is such that (x

i1 , wi1) 2 Rguilt but the verifier accepts. With probability 1/% =
⇥(1/ log), i

0

= i
1

. Thus, with probability "
⇡

= �

%2

% = �⇥(1), A
⇡

has given

to the extractor an input (x
i0 , wi0) 2 Rguilt such that there exists ⇡

i0 such that
the verifier accepts (x

i0 ,⇡i0 , wi0). With such inputs, since the verifier accepts,
there exists a good challenge e0, and the extractor outputs it. In this case, A

⇡

has returned a good e0.
Finally, if the verifier accepts then due to the optimal culpable soundness,

the value e0 returned by the extractor must be equal to the value e that has
been encrypted by c

e

. Since the only information that A
⇡

has about e is given
in c

e

(since A
⇡

’s random answers do not reveal anything), this means that A
⇡

has returned the plaintext of c
e

with non-negligible probability, and thus break
the message recovery security of ⇧.

Composable Zero Knowledge. Assume that (Z.sk,Z.pk) Z.G(1),
and (x,w) A(Z.sk,Z.pk). The simulator Z.sim(Z.sk, x) can obtain e from
c
e

by decrypting it. Given e, he runs S.sim(x, e) to obtain an accepting view
(c

a

, e, z). He then computes c
z

 Epke(z) and returns ⇡ (c
a

, c
z

).
We now show that the transcript comes from a distribution that is indis-

tinguishable from that of the real view. Cnsider the following hybrid simulator
Z.simw that gets the witness w as part of the input. Z.simw does the following:
1. Create (c

a

, z
1

, z
2

) S.P(x,w) and the ⌃ protocol transcript (c
a

, e, z),
z ez1 + z2, by following the ⌃-protocol.

2. Encrypt z component-wise to get c
z

.
3. Return ⇡ (c

a

, c
z

)
Since the encryption scheme is blindable, such a hybrid argument is perfectly in-
distinguishable from the real argument. Since the ⌃-protocol is specially HVZK,
hybrid arguments and simulated arguments are computationally indistinguish-
able. If the ⌃-protocol is statistically specially HVZK, then hybrid arguments
and simulated arguments (and thus also real arguments and simulated argu-
ments) are statistically indistinguishable.

ut

	Optimally Sound Sigma Protocols Under DCRA

