
Confidential Assets

Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and
Pieter Wuille

Blockstream
{apoelstra, adam, mark, gmaxwell, pwuille}@blockstream.com

Abstract. Bitcoin is an online distributed ledger in which coins are
distributed according to the unspent transaction output (UTXO) set, and
transactions describe changes to this set. Every UTXO has associated to
it an amount and signature verification key, representing the quantity
that can be spent and the entity authorized to do so, respectively.
Because the ledger is distributed and publicly verifiable, every UTXO
(and the history of all changes) is publicly available and may be used for
analysis of all users’ payment history. Although this history is not directly
linked to users in any way, it exposes enough structure that even small
amounts of personally identifiable information may completely break
users’ privacy. Further, the ability to trace coin history creates a market
for “clean” coins, harming the fungibility of the underlying asset.
In this paper we describe a scheme, confidential transactions, which
blinds the amounts of all UTXOs, while preserving public verifiability
that no transaction creates or destroys coins. This removes a significant
amount of information from the transaction graph, improving privacy
and fungibility without a trusted setup or exotic cryptographic assump-
tions.
We further extend this to confidential assets, a scheme in which a single
blockchain-based ledger may track multiple asset types. We extend con-
fidential transactions to blind not only output amounts, but also their
asset type, improving the privacy and fungibility of all assets.

1 Introduction

Deployed in 2009, Bitcoin [16] is an online currency with no trusted issuer or
transaction processor, which works by means of a publicly verifiable distributed
ledger called a blockchain. The blockchain contains every transaction since its
inception, resulting in a final state, the unspent transaction output set (UTXO
set), which describes the amounts and owners of all coins.

Each UTXO contains an amount and a verification key; transactions destroy
UTXOs and create new ones of equal or lesser total amount, and must be signed
with the keys associated to each destroyed UTXO. This model allows all users
to verify transaction correctness without trusting any payment processor to be
honest or reliable. However, this model has a serious cost to user privacy, since
every transaction is preserved forever, exposing significant amounts of informa-
tion directly and indirectly [10].

2

One suggestion to obscure transaction structure is CoinJoin [13], which allows
users to interactively combine transactions, obscuring which inputs map to which
outputs. However, because transaction amounts are exposed, it is difficult to use
CoinJoin in such a way that these mappings cannot be recovered, at least in a
statistical sense [20]. In particular, unless all output amounts are the same, they
are distinguishable and may be grouped.

We propose a partial solution to the exposure of transaction data, which
blinds the amounts of all outputs, while preserving public verifiability of the fact
that the total output amount is equal to the total input amount. This solution,
termed confidential transactions, has been described informally by Maxwell [14]
and deployed on the Elements Alpha sidechain [2] for over a year. In brief,
each explicit UTXO amount is replaced by a homomorphic commitment to the
amount. Since these amounts are homomorphic over a finite ring rather than the
set of integers, we also attach a rangeproof to each output to prevent attacks
related to overflow.

First, we formalize and improve confidential transactions, describing a space
optimization of the underlying ring signature used in Elements Alpha. Then
we extend confidential transactions to a new scheme, confidential assets, which
further supports multiple asset types within single transactions. We retain public
verifiability that no assets are created or destroyed, while hiding both the output
amount(s) and the output asset type(s).

Related Work. Multi-asset blockchains were described in 2013 in Friedenbach
and Timón’s Freimarkets [8], though the supported assets were not confidential;
that is, the amounts and asset tags of all inputs and outputs of transactions are
publicly visible.

Support for asset issuance on top of Bitcoin has been proposed by means of
colored coins [12], a scheme in which individual coins are marked in such a way
that they are identifiable as representing distinct asset types. In effect, it works
by exploiting Bitcoin’s imperfect fungibility.

Ethereum [22] directly supports asset issuance using its smart contracting
language, and has a standard means to do so which ensures interoperability
with supporting software [18]. Like the above schemes, no attempt is made to
obfuscating either the asset types or their amounts.

ZCash [21] is a recently announced cryptocurrency project which supports
blinding of amounts, as well as any other identifying information about trans-
action inputs and outputs. It does not support multiple assets, though its use
of zk-SNARKs [3], which are general-purpose zero-knowledge arguments, mean
that asset support would not be a difficult extension.

However, ZCash’s privacy comes at a significant cost: the underlying SNARKs
use a trusted setup, meaning it is initialized by multiple parties who are able
to collude to silently inflate the currency; it relies on novel cryptographic as-
sumptions; its zero-knowledge proofs are very slow to compute. To contrast, the
scheme described in this paper relies only on elliptic curve discrete logarithm
(ECDL) being hard and the random oracle model, and all computations involve
few and standard elliptic curve operations (e.g. no pairings).

3

Acknowledgements. We thank Ben Gorlick for his input on the practical re-
quirements of a confidential assets-based system, and his technical review, and
feedback on the systems design.

2 Preliminaries

Definition 1. We define a Bitcoin transaction as the following data:

– A list of outputs, containing a verification key and an amount.
– A list of inputs, which are unambiguous references to the outputs of other

transactions. These also have signatures using the verification keys of their
respective outputs.

– A fee, which is computed as the total input amount minus the total output
amount, and is captured by the network.

(To bootstrap the system, we also need coinbase transactions, which have out-
puts but no inputs; for the purpose of this paper they can be considered as
transactions with negative fee.)

In Bitcoin, all amounts are explicit, and for a (non-coinbase) transaction
to be valid, it must have a non-negative fee as well as valid signatures of the
transaction with all inputs’ verification keys.

We will replace these explicit amounts with homomorphic commitments, for
which we need the following definitions.

Definition 2. Given a message space M = Zq, commitment space C ' M and
public parameters space PP, we define a homomorphic commitment scheme as
a triple of algorithms:

– Setup: · → PP
– Commit: PP ×M×M→ C,
– Open: PP ×M×M× C → {true, false}

satisfying, for pp← Setup,

– for all (m, r) ∈M×M, Open(pp,m, r,Commit(pp,m, r)) accepts; and
– if

Open(pp,m1, r1, C1) and Open(pp,m2, r2, C2)

both accept, then

Open(pp,m1 +m2, r1 + r2, C1 + C2)

also accepts.

We will often leave pp implicit and not mention it as an input to Commit
or Open. Unless otherwise specified, all theorems are understood to hold for all
pp ∈ PP.

4

We further require our commitments be binding and hiding, by which we mean
the following.

Definition 3. A commitment is perfectly binding if for all m 6= m′ ∈ M, all
r, r′ ∈M, Open(m, r,Commit(m′, r′)) rejects.

It is computationally binding if for all p.p.t. adversaries A, the probability of
A producing (m′, r′) with m′ 6= m such that Open(m, r,Commit(m′, r′)) accepts
is negligible.

Definition 4. A commitment scheme is (perfectly, statistically, computation-
ally) hiding if given pp and m1 6= m2, the distributions

U1 = {C : C ← Commit(pp,m1, r), r
$←−M}

U2 = {C : C ← Commit(pp,m2, r), r
$←−M}

are (equal, statistically indistinguishable, computationally indistinguishable).

For the purposes of this paper, we will use Pedersen commitments, which
are computationally binding, perfectly hiding homomorphic commitments [17].
They are defined as follows.

Definition 5. The Pedersen commitment scheme is the following triple of algo-
rithms. We takeM = Zq and C to be an isomorphic elliptic curve group; further
H is a point-valued hash function modeled as a random oracle.

– Setup takes a cyclic group with distinguished generator (G, G) as well as
auxiliary input α. It computes H = H(α) and outputs pp = {G, G,H}.

– Commit(m, r) outputs mH + rG.
– Open(m, r, C) accepts iff C = mH + rG.

(The original Pedersen scheme uses uniformly random generators G, H, rather
than taking H as the output of a hash function. In the random oracle model,
these are equivalent.)

In order to commit to transaction amounts, which are integers, we will need
to represent them as elements of M = Zq, which will complicate matters since
every multiple of q will be indistinguishable from zero. To avoid problems, we
will need one more primitive.

Definition 6. Given a homomorphic commitment scheme as above, and 0 ≤
A ≤ B ≤ q, we define a rangeproof of the range [A,B] as a pair of randomized
algorithms

– Prove[A,B]: PP×M→ C×M×S takes a value and generates a commitment
to that value with opening information and an associated rangeproof.

– Verify[A,B]: PP × C ×S → {true, false} takes a commitment and rangeproof
and either accepts or rejects it.

5

where S represents the space of possible rangeproofs. We require that for all
v ∈ [A,B], (C, r, π)← Prove[A,B](v) that both

Verify[A,B](C, π) and Open(v, r, C)

accept.

We require the following security properties of rangeproofs:

Definition 7. (Proving.) Let 0 ≤ A ≤ B ≤ q. Then a rangeproof scheme is
proving an amount in the range [A,B] if for any p.p.t. algorithm A that outputs
(C, π) ∈ C × S such that Verify(C, π) accepts, a simulator B exists which given
oracle access to A can produce (v, r) such that v ∈ [A,B] and Open(v, r, C)
accepts.

We observe that since the commitment scheme is binding, an opening to an
amount in [A,B] precludes an opening to any amount outside of [A,B].

In light of Definition 7, given a commitment C with valid rangeproof π, we can
talk about “the opening information (v, r) of C” unambiguously in simulation-
based proofs, even without knowledge of it (since this knowledge can in principle
be obtained by the simulator). In particular, any security proof which requires
an adversary to produce opening information of commitments will continue to
hold if the opening information is replaced by rangeproofs.

Definition 8. (Statistical zero-knowledge.) Given pp ∈ PP and two values
v1, v2 ∈ [A,B], the following distributions are identical:

{(C, π) : (C, ·, π)← Prove (pp, v1)}

{(C, π) : (C, ·, π)← Prove (pp, v2)}

3 Confidential transactions

3.1 Rangeproofs

We begin by describing an efficient rangeproof for Pedersen commitments over
the interval [0,mn − 1], which has total size proportional to 1 + nm, using a
variant of a folklore bit-decomposition based rangeproof, in which numbers are
expressed in base m and each digit is proven to lie in [0,m − 1] using a ring
signature.

We use a variant of Borromean Ring Signatures [15], which itself is a variant
of the Abe-Ohkubo-Suzuki ring signature [1], tweaked to exploit the fact that
many small rings of related keys are used.

Unlike some other rangeproofs in the literature [6], ours does not require a
trusted setup 1. In fact, the only cryptographic assumption it relies on is the

1 While our rangeproof does require setup, the only generated parameters are uni-
formly random curvepoints, which can be generated with no possibility of trapdoor
information, e.g. by the algorithm by Fouque and Tibouchi [7]

6

hardness of discrete logarithm in the random oracle model. Nor is it interactive,
as is the scheme described in [5]. Despite these improvements, our scheme still
produces smaller proofs than these papers for the ranges (30-80 bits) that we
are interested in.

Schoenmakers [19] described a simple rangeproof of base-b digits using the
conjuction of zero-knowledge OR proofs of each digit. Our work is based on this
rangeproof with the following changes: our OR proofs are based on Borromean
Ring Signatures, which allow sharing a random challenge across every digit’s
proof, and we remove one scalar from each proof by a novel trick in which we
may change the commitment to each digit (without changing the digit itself)
while we produce the proof.

Definition 9. (Back-Maxwell Rangeproof) Consider a Pedersen commitment
scheme with generators G, H, and let H : C →M be a random oracle hash.

– Verify
(
C, π =

{
e0,
(
C0, s01, s

0
2, . . . , s

0
m−1

)
, . . .

(
Cn−1, sn−11 , sn−12 , . . . , sn−1m−1

)})
works as follows:
1. For each i ∈ {0, . . . , n− 1},

(a) Define ei0 = e0 for consistency of the following equations.
(b) For each j ∈ {1, . . . ,m− 1}, compute

eij ← H
(
sijG− eij−1

[
Ci − jmiH

])
(1)

(c) Compute Ri ← eim−1C
i.

2. Compute ê0 ← H(R0‖ · · · ‖Rn−1).
3. Accept iff:

• ê0 = e0; and
• C =

∑
i C

i.
– Prove(v, r). Proving works as follows.

1. Write v in base m as v0+v1m+ · · ·+vn−1mn−1. (Note that superscripts
on m are exponents while superscripts on v are just superscripts.)

2. For each i ∈ {0, . . . , n− 1},
(a) If vi = 0, choose ki0

$←− Zq and set Ri ← ki0G.
(b) Otherwise,

i. Choose ri uniformly randomly and compute Ci ← Commit(mivi, ri).

ii. Choose ki
$←− Zq and compute eivi ← H(kiG).

iii. For each j ∈ {vi+1, . . . ,m−1}, choose sij
$←− Zq, and compute eij

directly from equation (1). (If vi = m− 1, this step is a no-op.)
iv. Compute Ri ← eim−1C

i.
3. Set e0 ← H(R0‖ · · · ‖Rn−1).
4. For each i ∈ {0, . . . , n− 1},

(a) If vi = 0,
i. For each j ∈ {1, . . . ,m− 1}, choose

kij
$←− Zq

eij ← H(kij + eij−1m
ijH)

taking ei0 = e0.

7

ii. Set Ci ← Ri/eim−1 =
ki
0

eim−1
G.

iii. For each j ∈ {1, . . . ,m− 1}, set sij ← kij +
ki
0e

i
j−1

eim−1
.

(b) Otherwise,

i. For each j ∈ {1, . . . , vi − 1}, choose sij
$←− Zq, and compute eij

directly from equation (1), taking ei0 = e0. (If vi = 1 this is a
no-op.)

ii. Set sivi = ki + eivi−1r
i.

5. Set C ←
∑n−1

i=0 C
i. Output

π =
{
e0,
(
C0, s01, s

0
2, . . . , s

0
m−1

)
, . . .

(
Cn−1, sn−11 , sn−12 , . . . , sn−1m−1

)}
.

We observe that this is nearly the same construction as Borromean Ring Signa-
tures except for the following two differences:

– There are no si0 values, which were used in the calculation of ê0 in the
Borromean Ring Signature construction, saving i scalars in the total proof.

– The commitments Ci are no longer included in any hashes (which is neces-
sary when computing sub-commitments to the digit (m− 1), as seen in step
4(a)ii of the Prove algorithm).
Unfortunately, the resulting construction is no longer a secure ring signature
in general; the proof of security depends on all keys being binding commit-
ments rather than arbitrary public keys.

It is immediate that the above construction is a correct rangeproof. We argue
security in the next two theorems.

Theorem 1. If the underlying commitment scheme is binding in the sense of
Definition 3, then the above construction is a proving rangeproof in the sense of
Definition 7.

Proof. Let (C, π) be generated by some p.p.t. algorithmA, such that Verify(C, π)
accepts. Write

π =
{
e0,
(
C0, s01, s

0
2, . . . , s

0
m−1

)
, . . .

(
Cn−1, sn−11 , sn−12 , . . . , sn−1m−1

)}
.

By Theorem 8 in Appendix A, with nonnegligible probability A can be used to
obtain openings (vi, ri) of each Ci with vi ∈ {0,mi, 2mi, . . . , (m − 1)mi}. By
summing these we obtain an opening (v, r) of C with v ∈ [0,mn].

Theorem 2. The above construction is zero-knowledge in the sense of Defini-
tion 8.

Proof. This is nearly immediate. Observe that all values output by the Prove
algorithm are selected independently uniformly at random, except where they
are forced by the verification equations (which are independent of the committed
values).

8

3.2 Confidential transactions

We now modify the definition of Bitcoin transaction (Definition 1).

Definition 10. We define a confidential transaction as the following data:

– A list of outputs, containing a verification key, Pedersen commitment to
an amount, and Back-Maxwell rangeproof that it lies in a range [0, 2n − 1]
with n significantly smaller than the bit-length of size of the committed-value
group.

– A list of inputs, which are unambiguous references to the outputs of other
transactions, with signatures using the verification keys of those outputs.

– A fee f , which is listed explicitly.

Our validity condition is changed as follows: the fee must be non-negative
(except for coinbase transactions), the sum of all input commitments minus all
output conditions must equal fH, and there must be valid signatures with all
inputs’ verification keys. This equation is important enough to give it a name.

Definition 11. The verification equation is: input amounts minus output amounts
equals fee (times H, when these amounts are considered as commitments).

To summarize, the differences between confidential transactions and Bitcoin
transactions are:

– Explicit amounts are replaced by homomorphically committed ones.
– Rather than computing the fee, it is given explicitly and checked that the

inputs minus outputs commit to it.

Payment authorization is achieved by means of the input signatures, which
are unchanged from Bitcoin and not discussed in this paper. However, we need
to argue that this change does not allow coins to be created invalidly.

Theorem 3. Consider a valid confidential transaction with fee f , inputs com-
mitting to amounts {Ii}ki=0, and outputs committing to amounts {Oi}`i=0. Sup-
pose also that k + ` + 1 < |C|/R, where the output rangeproofs are to the range
[0, R−1] and f ∈ [0, R−1]2. If the rangeproofs are proving and the commitments

are binding, then no subset of {Oi} commits to more than
∑k

i=0 Ii − f .

We observe that simply arguing that
∑k

i=0 Ii − f =
∑`

i=0Oi is insufficient:
for example, with zero inputs and fee, an attacker could commit to two output
amounts {1,−1}, and have created a coin from nowhere even though the total
equation balances.

Proof. Since all rangeproofs are valid and commitments are binding, for each i
we have 0 ≤ Oi ≤ R. Similarly for the inputs, which are outputs of previous
(valid) transactions.

2 Typically the group order C ≈ 2256 and R ≈ 264 so this requirement is physically
impossible to violate in practice.

9

Next, since the input commitments minus output commitments equal fH,
we have

∑k
i=0 Ii − f −

∑`
i=0Oi ≡ 0 (mod |C|), or

k∑
i=0

Ii − f −
∑̀
i=0

Oi = m|C|

for some integer m. Now, since k + ` + 1 < |C|/R, and by our bounds on the
individual terms, we can bound the left side of this equation as

−|C| <
k∑

i=0

Ii − f −
∑̀
i=0

Oi < |C|.

But this implies that m = 0, i.e. that the input amounts add to the output
amounts (plus fee).

Finally, since all output amounts are positive, every subset of outputs must
sum to less than or equal to

∑k
i=0 Ii − f , as desired.

3.3 Performance

Consider a group G where both scalars and group elements are encoded in 1 unit
of space (in practice, 32 bytes or 256 bits). We contrast three schemes: a naive
folklore rangeproof using separate AOS ring signatures for each digit; one using
Borromean Ring Signatures [15] as implemented in Elements Alpha[2]; and our
scheme described above. We compare asymptotic and also look at the specific
case 238 ≈ 324. While the naive and Alpha schemes are space-optimal in base 4,
our scheme is space-optimal in base 3. 3

Scheme Base Digits Range Total Size
Naive m n mn (m+ 2)n
Alpha m n mn 1 + (m+ 1)n
Ours m n mn 1 +mn
Naive 4 19 238 114
Alpha 4 19 238 96
Ours 3 24 324 73

For this range we observe a 24% reduction from the Alpha rangeproof and 36%
reduction from the naive rangeproof at a slightly larger range.

3 The optimality of one base over another comes from the fact that numbers in higher
bases have fewer digits, reducing the size of each OR proof, while increasing the
size of the individual OR proofs. Since in base b, the Alpha rangeproof requires b
scalars and a commitment, while our optimization requires only b− 1 scalars and a
commitment, the optimum has shifted.

10

4 Confidential assets

4.1 Asset Commitments and Surjection Proofs

Before moving on, we need a few more primitives.

Definition 12. Given some asset description A (whose precise form is given in
Section 4.4), the associated asset tag is an element HA ∈ G obtained by execution
of the Pedersen commitment Setup using A as auxiliary input.

When using multiple Pedersen commitment schemes, we distinguish them by
adding their second generator as a subscript to their algorithms, like OpenHA

or
CommitHA

.

In particular, in the random oracle model an asset tag is a uniformly random
curve point whose discrete logarithm is not known with respect to G or any
other asset tag.

Definition 13. Given an asset tag HA, an (ephemeral) asset commitment is a
point of the form H = HA + rG, for uniformly random r. We sometimes abuse
terminology to say that H is a commitment to the asset HA.

In the next section, we are going to use these asset commitments in place of
the generator H in our Pedersen commitments. The following theorems justify
this.

Theorem 4. Let H be an asset commitment to asset tag HA, and C a Ped-
ersen commitment such that OpenH(v, r, C) accepts. Then if HA = H + sG,
OpenHA

(v, r − sv, C) accepts.

This theorem is immediate, and implies that Pedersen commitments to an
amount with some asset commitment as generator are also Pedersen commit-
ments to the same amount with the underlying asset tag as generator. Further,
anyone who knows the blinding factor s and the opening information with re-
spect to one generator can determine the opening information with respect to
the other generator.

Such Pedersen commitments commit not only to the committed amount, but
also to the underlying asset tag, in the following sense.

Theorem 5. If a p.p.t. algorithm A exists which can win with nonnegligible
probability in the following game, then a simulator B exists which can solve the
discrete logarithm problem for G with nonnegligible probability.

1. A calls Setupi to produce asset tags Hi for i = 0, 1, . . . , n.
2. A produces commitments Ci and openings (vi, ri) such that Openi(vi, ri, Ci)

accepts for i = 1, . . . , n.
3. A produces an opening (v, r) such that v 6= 0 and Open0 (v, r,

∑n
i=1 Ci) ac-

cepts.

11

The proof of this theorem is given in the Appendix.
By the comment following Definition 7, the same theorem holds if the adver-

sary is required to produce rangeproofs rather than opening information.
We will attach fresh random asset commitments to all transaction outputs,

and we need a way to link inputs and outputs without revealing the mapping.
The following tool will be essential.

Definition 14. An asset surjection proof (ASP) scheme consists of the follow-
ing algorithms.

– Prove takes a collection {Hi}ni=1 of “input” asset commitments, an “output”
commitment H = Hi∗ + rG for some 1 ≤ i∗ ≤ n, and r. It outputs a proof
π.

– Verify takes a collection {Hi}ni=1, H, and a proof π and either accepts or
rejects.

We often say that an ASP is from the set {Hi} of input commitments to the
output commitment H.

Definition 15. An ASP is secure if a proof π produced by the Prove algorithm
is a zero-knowledge proof of knowledge (zkPoK) of the blinding factor r.

This is easy to construct from a ring signature which is a zkPoK of one of
its secret keys, for example the AOS ring signatures described in [1].

Definition 16. The AOS ASP is the following:

– Prove computes the n differences H − Hi for i = 1, . . . , n (one of which
will be r) and computes a ring signature of an empty message with these
differences. The proof π is the signature.

– Verify computes the same differences and verifies the ring signature.

It is immediate that the AOS ASP is secure if the underlying AOS ring
signature scheme is a zkPoK.

4.2 Confidential assets

Up to now, we have considered a single asset (for example Bitcoin) and transac-
tions which move this asset from one holder to another. Consider an extension of
this scheme which supports multiple non-interchangeable asset types (for exam-
ple, BTC and a USD proxy) within single transactions. This increases the value
of the chain by allowing it to serve more users, and also enables new functionality,
such as atomic trades of different assets.

We could accomplish this by attaching to each output an asset tag identifying
the type of that asset, and having verifiers check that the verification equation
holds for subsets of the transaction which have only a single asset type. (Basically,
treating the transaction as multiple single-asset transactions, except that each
input signs the entire aggregate transaction.)

12

This requires verification of multiple equations, increases complexity, and
more importantly, gives chain analysts an additional data point to consider,
reducing the privacy of the users of the chain. This also could lead to censorship
of transactions involving specific asset types, since all asset types are visible.

We instead propose a scheme for which all asset tags are blinded, so that no
relationship between output asset types can be inferred. This avoids the privacy
loss and greatly improves privacy by hiding the specific assets used by individual
transactions. This is especially important for assets with low transaction volume
where use of the asset alone is sufficient to identify users.

Definition 17. A confidential asset transaction is the following data:

– A list of inputs, which are one of two forms:
• an unambiguous reference to an output of another transaction, with a

signature using that output’s verification key
• an asset issuance input, which has an explicit amount and asset tag; the

precise validity rules for these are defined outside of this paper, but they
are discussed further in Section 4.4.

– A list of outputs, containing
• a verification key,
• an asset commitment Ho with a ASP from all input asset commitments

to Ho;
• Pedersen commitment to an amount using generator Ho in place of H,

with Back-Maxwell rangeproof (also using Ho in place of H) that it lies
in a range [0, 2n − 1] with n significantly smaller than the bit-length of
size of the committed-value group.

– A fee {(fi, Hi)}ni=1, which is listed explicitly. Here the fi’s are scalar amounts
denominated in the assets whose tags are the respective Hi. We require all
Hi’s to be distinct for simplicity. (Note that the asset types used to pay
fees must be revealed. In practice we expect a working system to use fees
denominated in only one asset, say, Bitcoin, so privacy is not lost.)
Each fi must always be nonnegative; assets originate in asset-issuance in-
puts, which take the place of coinbase transactions in confidential transac-
tions.

The validity equation is identical to that for confidential transactions, except
that the fee commitment is calculated as

∑n
i=1 fiHi instead of simply fH.

Again, payment authorization is achieved by means of the input signatures,
so we do not argue this, only that no assets are created. We first prove a theorem
to argue that the construction is sensible.

Theorem 6. Consider a valid confidential asset transaction and let H be any
fixed asset tag. Then the transaction is valid for H, in the following sense. Re-
strict the transaction to those inputs and outputs whose asset commitments are
to H, and take f = fi if Hi = H for any i and zero otherwise.

Then if the discrete logarithm problem is hard in the underlying group, the
sum of input commitments minus the sum of output commitments of this re-
stricted transaction cannot be opened to any amount except f .

13

Proof. Consider the algorithm A which produced the transaction, and the trans-
actions whose outputs are used as inputs, and so on. (In practice A will be the
conjunction of many different transacting parties, but this does not affect our
argument.)

Since every output has a rangeproof and ASP associated to it, which are
proofs of knowledge of the opening information and asset commitment blinding
factor, respectively, of every output, there exists a simulator B which extracts
this information from A. Using the blinding factors and Theorem 4, we can
consider every rangeproof as being with respect to the underlying asset tag,
rather than the asset commitment.

Now, consider the sum of the outputs minus inputs minus fH of the restricted
transaction is some commitment C. This commits to some amount of H. But
since the non-restricted transaction is valid, we have that the remaining outputs
minus inputs, minus remaining fees, equals −C. Since the remaining inputs,
outputs, and fees are commitments to non-H asset tags, by Theorem 5, C must
commit to 0, completing the proof.

Theorem 7. Consider a valid confidential asset transaction and let H be any
fixed asset tag. Suppose the transaction has fee f {(fi, Hi)}ni=1, inputs committing
to amounts {Ii}ki=0, and outputs committing to amounts {Oi}`i=0. Suppose also
that k + ` < |C|/R, where the rangeproofs prove to the range [0, R − 1]. If the
rangeproofs are proving and the commitments are binding, then no subset of {Oi}
commits to more than

∑k
i=0 Ii − f .

Proof. By the above theorem, the transaction restricted to only inputs and out-
puts with asset tag H is a valid confidential transaction, except that the output
commitments minus input commitments minus fee sum to a commitment to 0,
rather than the 0 point itself. The proof of Theorem 3, which does not make
use of this distinction, therefore goes through without change on the restricted
transaction.

4.3 Performance

In Section 3.3 we described the size of our rangeproofs, which are attached to
every transaction output. This is unchanged for confidential assets, but we also
require two additional pieces of data: an asset commitment and an ASP showing
that this commitment is legitimate.

In the units of Section 3.3, the asset commitment has size 1 and the ASP has
size n+ 1, where n is the number of inputs that a given output may have come
from.

For any entire transaction with m outputs and n inputs, the additional data
therefore has size m(n+ 2). We can improve this at the cost of privacy by using
a weaker form of an ASP which proves an asset commitment is the same as one
of 3 inputs, rather than being the same as any of them. The additional data
would then have cost only 5m, which is asymptotically better.

14

4.4 Issuance

As discussed in Section 4.1, the asset tag is an element HA ∈ G obtained by
execution of the Pedersen commitment Setup using an auxiliary input A. In the
context of a blockchain, we want to ensure that any input A is used only once
to ensure assets cannot be inflated by means of multiple independent issuances.
Associating an issuance with the spend of a UTXO, and a maximum of one
issuance per specific UTXO achieves this uniqueness property. The unambiguous
reference to the UTXO being spent is hashed together with a issuer-specified
value, the Ricardian contract hash[9], to generate the auxiliary input A to the
Pedersen commitment.

Definition 18. Given an input being spent I, itself an unambiguous reference
to an output of another transaction, and the issuer-specified Ricardian contract
C, the asset entropy E is defined as Hash(Hash(I)||Hash(C)).

The Ricardian contract is a machine parseable legal document specifying the
conditions for use, and especially redemption of the asset being issued [9]. The
details of how such a contract might be designed or enforced is outside the scope
of this paper. All that matters for the purposes here is that such a document
exists and that its hash is irrevocably committed to in the issuance of the asset.

Definition 19. Given an asset entropy E, the asset tag is the element HA ∈ G
obtained by execution of the Pedersen commitment Setup using Hash(E||0) as
the auxiliary input.

Every non-coinbase transaction input can have associated with it up to one
new asset issuance:

Definition 20. An asset issuance input consists of an UTXO spend I (inter-
preted as a non-issuance input of the same transaction); a Ricardian contract
C; an initial issuance explicit value v0, or Pedersen commitment H and Back-
Maxwell rangeproof P0; and a Boolean field indicating whether reissuance is al-
lowed.

Reissuance will be explained in Section 4.5.

4.5 Reissuance and capability tokens

Assets may be either of fixed issuance or, optionally, enable later reissuance using
a asset reissuance capability. This capability is a token providing its owner with
the ability to change the amount of asset in circulation at any point after the
initial issuance. When a reissuable asset is created, both the initial asset issuance
and the reissuance capability token are generated at the same time.

Definition 21. Given an asset entropy E, the asset reissuance capability is the
element HA ∈ G obtained by execution of the Pedersen commitment Setup using
Hash(E||1) as the auxiliary input.

15

An asset which supports reissuance indicates this in its asset issuance input,
and the transaction contains an additional output of amount 1 which commits
to asset tag HA.

Note the parallel to the definition of the asset tag given in Section 4.4, but
with the concatenation of a different constant before hashing. In this way an
asset tag is linked to its corresponding reissuance capability, and the holder of
such a capability is able to assert their reissuance right simply by revealing the
blinding factor for the capability along with the original asset entropy.

Definition 22. An asset reissuance input consists of a spend of a UTXO con-
taining an asset reissuance capability; the original asset entropy E; the blinding
factor for the asset commitment of the UTXO being spent; and either an explicit
reissuance amount vi, or Pedersen commitment H and Back-Maxwell rangeproof
Pi.

We call attention to the fact that this reissuance mechanism is a specific in-
stance of a general capability-based authentication scheme. It is possible to use
the same scheme to define capabilities that gate access to other restricted oper-
ations. In the authors’ implementation there exists separate capabilities for in-
creasing and decreasing issuance, and explicit vs committed reissuance amounts.
In general the right being protected could even be made extensible by making
the commitment generator the hash of a script that validates the spending trans-
action.

4.6 Performance

In contrast to Confidential Transactions, in which every output has an attached
rangeproof, each Confidential Assets output must also have an asset tag and
asset surjection proof. As in Section 3.3, we consider curvepoints and scalars to
have the same size,

For an output whose amount is in the range [0,mn) and whose asset references
A assets, the total size of of the rangeproof and ASP is therefore (1+mn)+(2+A)
where the first term is the contribution of the rangeproof and the second the
contribution of the asset tag and ASP. For a prototypical example of a [0, 324)
rangeproof and three inputs, the total is 78 scalars, or 19968 bits.

4.7 “Small Assets” and “Big Assets”

To prove that the asset commitments associated to outputs commit to legiti-
mately issued asset tags, we have used asset surjection proofs which show that
they commit to the same asset tag as some input (if those inputs are outputs of
previous transactions, they have ASP’s showing the same thing, and so on until
the process terminates at an asset issuance input which has an explicit asset
tag).

This allows confidential assets to work on a blockchain which supports indef-
initely many asset types, which may be added after the chain has been defined.

16

An alternate scheme, which works for a small fixed set of asset tags, is to
define the asset tags at the start of the chain, and to have each output include
an ASP to the global list of asset tags. We refer to this scheme as “small assets”
and the more general scheme as “big assets”.

It is also possible to do an intermediate scheme, by having a global dynamic
list of assets with each transaction selecting a subset of asset tags which its
outputs have an ASP to. In general, there is room to adapt this scheme for
optimal tradeoff between ASP size and privacy for specific use cases.

We observe that small assets is compatible with Mimblewimble [11], a new
extension to confidential transactions which improves privacy and scaling by
removing information from the transaction graph, while big assets is not.

5 Future Research

The authors describe some research directions they would like to see.

Rangeproof Efficiency. While this paper describes the most efficient rangeproof
construction without trusted setup that the authors are aware of, in practice
for a blockchain-based currency, rangeproofs are still the bulk of the transaction
data. Further improvements, especially asymptotic ones, would help.

ASP Efficiency. Similarly, the ASP construction scales with both the number
of inputs and the number of outputs; by restricting the set of inputs it uses we
improve this at cost of user privacy, but it is desirable to avoid this tradeoff.

Aggregate Rangeproofs. If it were possible to aggregate rangeproofs (e.g. to com-
bine proofs that C1 and C2 commit to values in [0, 2n − 1] into a single proof
that C1 + C2 commits to a value in [0, 2n+1 − 1], this would also improve the
efficiency of a blockchain-based system, since proofs could be placed in a Merkle-
sum tree whose nodes contained an aggregate rangeproof of the rangeproofs of
their children. Then validators could check only the root to ensure an entire tree
did not cause any inflation, delaying checking the proofs on individual outputs
until those outputs are spent.

Quantum Resistance. The primitives described in this paper all depend on
the elliptic-curve discrete logarithm assumption, which is known to be insecure
against a quantum adversary. A quantum-hard analogue would require a replace-
ment for Pedersen commitments (perhaps [4]), for the ring signatures used by
ASP’s, and for rangeproofs.

17

A Appendix: Proofs

Theorem 8. Fix integers i ≥ 0, m > 0. Consider an algorithm A which can
produce the tuple

π = (α, e0, C, s1, . . . , sm−1)

such that one can define, for j ∈ {1, . . . ,m− 1},

ej ← H
(
sjG− ej−1

[
C − jmiH

])
,

R← em−1C,

and it holds that e0 = H(R‖α). (Observe that the formula for ej is the same as
(1) from Definition 9; this represents the verification equation of a single ring.
Here α is auxiliary data that A chooses, but in the full algorithm it consists of
the R values from the other rings.)

Then a simulator B exists, which given oracle access to A, can extract an
opening (v, r) such that Open(v, r, C) accepts and v ∈ {0,mi, . . . , (m− 1)mi}.

Proof. Suppose that A makes at most q random oracle queries. B acts as follows.
For each random oracle query it chooses a uniformly random scalar and responds
with this.

It chooses i∗ ∈ {1, . . . , q} uniformly at random, and on the i∗th query, B
forks A into A and A′. It gives ei∗ to A, e′i∗ to A′, and answers further queries
from other algorithms with uniformly random values.

Let the final output of the two algorithms be

π = (α, e0, C, s1, . . . , sm−1)

π′ = (α′, e′0, C
′, s′1, . . . , s

′
m−1)

and similarly ej and e′j are defined as in the hypothesis.
With probability 1/q − negl, we have ej = e′j for all j except one, j∗. (This

is the probability that the i∗th query was the last ej that A needed, and that it
obtained every ej by querying the random oracle rather than guessing.) Abort
otherwise.

We consider four cases.

1. If j∗ = m− 1, then

e0 = H(em−1C‖α) = H(e′m−1C
′‖α′) = e′0

so that except with negligible probability, α = α′ and C =
e′m−1

em−1
C ′. Now,

em−1 = H
(
sm−1G− em−2

[
C − (m− 1)miH

])
e′m−1 = H′

(
s′m−1G− em−2

[
C ′ − (m− 1)miH

])

18

where H, H’ are used to emphasize which side of the fork received these
random oracle responses. But by hypothesis, the input to these queries is
the same, that is,

sm−1G− em−2
[
C − (m− 1)miH

]
= s′m−1G− em−2

[
C ′ − (m− 1)miH

]
which is sufficient to solve for the discrete logarithms r, r′ of C−(m−1)miH
and C ′ − (m− 1)miH, giving us openings (m− 1, r) and (m− 1, r′) for the
commitments of the two forks.

2. If j∗ 6= m− 1 and C = C ′,then

ej∗+1 = H
(
sj∗+1G− ej∗

[
C − j∗miH

])
= H

(
s′j∗+1G− e′j∗

[
C − j∗miH

])
= e′j∗+1

and we can solve for the discrete logarithm r of C− j∗miH, and our desired
opening for C (the output of both forks) is (j∗mi, r).

3. If j∗ = 0 and C 6= C ′, we have that the inputs to

e0 = H(em−1C‖α)

e′0 = H(e′m−1C
′‖α′)

are the same, and em−1 = e′m−1 by hypothesis. This implies C = C ′, a
contradiction.

4. If 0 < j∗ < m− 1 and C 6= C ′, observe that

ej∗ = H
(
sj∗G− ej∗

[
C − j∗miH

])
e′j∗ = H′

(
s′j∗G− e′j∗

[
C ′ − j∗miH

])
and as in case 1, by hypothesis

sj∗G− ej∗
[
C − j∗miH

]
= s′j∗G− e′j∗

[
C ′ − j∗miH

]
(2)

Similarly,

em−1 = H
(
sm−1G− em−2

[
C − (m− 1)miH

])
= H

(
s′m−1G− e′m−2

[
C ′ − (m− 1)miH

])
= e′m−1

so

sm−1G− em−1
[
C − (m− 1)miH

]
= s′m−1G− e′m−1

[
C ′ − (m− 1)miH

]
(3)

Now, after rearranging, (2) is

1

j∗mi(e′j∗ − ej∗)
[
(sj∗ − s′j∗)G+ e′j∗C

′ − ej∗C
]

= H

19

and (3) is

1

(m− 1)mi(e′m−1 − em−1)

[
(sm−1 − s′m−1)G+ e′m−1C

′ − em−1C
]

= H

which combine to determine the discrete logarithms r, r′ of C and C ′, so
that (0, r) and (0, r′) are the desired openings.

A.1 Proof of Theorem 3

Proof. Recall that G is a fixed random generator of G. Let (G,X) be B’s discrete
logarithm challenge, i.e. B succeeds if it outputs x such that X = xG. We
consider two types of adversary: a type I adversary’s output satisfies

∑n
i=1 ri 6= r,

while a type II has equality. We assume that A makes at most q random oracle
queries.

For a Type I adversary, B acts as follows.
First, B responds to random oracle queries by choosing random scalars r

and replying with rX. Then from A’s perspective, Setupi outputs uniformly a
random generators Hi; however B knows scalars si such that Hi = siX.

Now, let (Ci, vi, ri, v, r) for i = 1, . . . , n be the output of A. Write C =∑n
i=1 Ci. We have

0 = C −
n∑

i=1

Ci

= vH0 + rG−
n∑

i=1

[viHi + riG]

= vs0X + rG−
n∑

i=1

[visiX + riG]

=

[
vs0 −

n∑
i=1

visi

]
X +

[
r −

n∑
i=1

ri

]
G

Since the sum in the right term is nonzero for a type I adversary, so must be the
sum in the left term, so we have

x =
r −

∑n
i=1 ri

vs0 −
∑n

i=1 visi

which satisfies X = xG.
For a Type II adversary, B acts as follows. It responds for the Type I simu-

lator, except for one random oracle queries it replies with sG rather than sX.
Then with probability 1/q we have H0 = s0G, and if not we abort. We also abort
if s0 = 0, which occurs with negligible probability.

The above equation then becomes

0 =

[
n∑

i=1

visi

]
X +

[
vs0 + r −

n∑
i=1

ri

]
G

20

where the right term is equal to vs0 6= 0, so the left term must also be nonzero,
and

x =
vs0∑n
i=1 visi

satisfies X = xG.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In:
In Advances in Cryptology - ASIACRYPT 2002, LNCS. pp. 415–432. Springer-
Verlag (2002)

2. Back, A.: Announcing sidechain elements: Open source code and developer
sidechains for advancing bitcoin (2015), Blockstream blog post, https://

blockstream.com/2015/06/08/714/

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. Cryptology ePrint
Archive, Report 2013/507 (2013), http://eprint.iacr.org/2013/507

4. Cabarcas, D., Demirel, D., Göpfert, F., Lancrenon, J., Wunderer, T.: An uncondi-
tionally hiding and long-term binding post-quantum commitment scheme. Cryptol-
ogy ePrint Archive, Report 2015/628 (2015), http://eprint.iacr.org/2015/628

5. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: ASIACRYPT 2008. pp. 234–252 (2008)

6. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant
communication. In: Financial Cryptography 2012. pp. 179–199 (2012)

7. Fouque, P.A., Tibouchi, M.: Indifferentiable Hashing to Barreto–Naehrig Curves,
pp. 1–17. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

8. Friedenbach, M., Timón, J.: Freimarkets: extending bitcoin protocol with user-
specified bearer instruments, peer-to-peer exchange, off-chain accounting, auc-
tions, derivatives and transitive transactions (2013), http://freico.in/docs/

freimarkets-v0.0.1.pdf

9. Grigg, I.: The ricardian contract. In: First IEEE International Workshop on Elec-
tronic Contracting. IEEE (2004)

10. Hearn, M.: Merge avoidance: Privacy enhancing techniques in the bitcoin protocol
(2013), http://www.coindesk.com/merge-avoidance-privacy-bitcoin/

11. Jedusor, T.: Mimblewimble (2016), defunct hidden service, http:

//5pdcbgndmprm4wud.onion/mimblewimble.txt. Reddit discussion at
https://www.reddit.com/r/Bitcoin/comments/4vub3y/mimblewimble_

noninteractive_coinjoin_and_better/

12. jl2012: OP CHECKCOLORVERIFY: soft-fork for native color coin support (2013),
BitcoinTalk post, https://bitcointalk.org/index.php?topic=253385.0

13. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world (2013), BitcoinTalk post,
https://bitcointalk.org/index.php?topic=279249.0

14. Maxwell, G.: Confidential transactions (2015), plain text, https://people.xiph.
org/~greg/confidential_values.txt

15. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015), http://diyhpl.us/

~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf

16. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009), https://

www.bitcoin.org/bitcoin.pdf

https://blockstream.com/2015/06/08/714/
https://blockstream.com/2015/06/08/714/
http://eprint.iacr.org/2013/507
http://eprint.iacr.org/2015/628
http://freico.in/docs/freimarkets-v0.0.1.pdf
http://freico.in/docs/freimarkets-v0.0.1.pdf
http://www.coindesk.com/merge-avoidance-privacy-bitcoin/
http://5pdcbgndmprm4wud.onion/mimblewimble.txt
http://5pdcbgndmprm4wud.onion/mimblewimble.txt
https://www.reddit.com/r/Bitcoin/comments/4vub3y/mimblewimble_noninteractive_coinjoin_and_better/
https://www.reddit.com/r/Bitcoin/comments/4vub3y/mimblewimble_noninteractive_coinjoin_and_better/
https://bitcointalk.org/index.php?topic=253385.0
https://bitcointalk.org/index.php?topic=279249.0
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
http://diyhpl.us/~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf
https://www.bitcoin.org/bitcoin.pdf
https://www.bitcoin.org/bitcoin.pdf

21

17. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret
sharing. Lecture Notes in Computer Science 576, 129–140 (2001)

18. Project, E.: Create your own crypto-currency with ethereum (2016), https://www.
ethereum.org/token. Retrieved on 2016-10-31.

19. Schoenmakers, B.: Interval proofs revisited (2005), slides presented at International
Workshop on Frontiers in Eleectronic Elections

20. Southurst, J.: Blockchain’s sharedcoin users can be identi-
fied, says security expert (2014), http://www.coindesk.com/

blockchains-sharedcoin-users-can-identified-says-security-expert/

21. Wilcox-O’Hearn, Z.: Zcash begins (2016), zCash Blog Post, https://z.cash/blog/
zcash-begins.html. Retrieved 2016-10-31.

22. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2014),
http://gavwood.com/paper.pdf

https://www.ethereum.org/token
https://www.ethereum.org/token
http://www.coindesk.com/blockchains-sharedcoin-users-can-identified-says-security-expert/
http://www.coindesk.com/blockchains-sharedcoin-users-can-identified-says-security-expert/
https://z.cash/blog/zcash-begins.html
https://z.cash/blog/zcash-begins.html
http://gavwood.com/paper.pdf

	Confidential Assets
	Introduction
	Preliminaries
	Confidential transactions
	Rangeproofs
	Confidential transactions
	Performance

	Confidential assets
	Asset Commitments and Surjection Proofs
	Confidential assets
	Performance
	Issuance
	Reissuance and capability tokens
	Performance
	``Small Assets'' and ``Big Assets''

	Future Research
	Appendix: Proofs
	Proof of Theorem 3

