
Constant-deposit multiparty lotteries on Bitcoin

Massimo Bartoletti1 and Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Università degli Studi di Trento, Trento, Italy

Abstract. An active research trend is to exploit the consensus mecha-
nism of cryptocurrencies to secure the execution of distributed applica-
tions. In particular, some recent works have proposed fair lotteries which
work on Bitcoin. These protocols, however, require a deposit from each
player which grows quadratically with the number of players. We propose
a fair lottery on Bitcoin which only requires a constant deposit.

1 Introduction

Recent research on blockchain technologies studies how to extend the applica-
tions of cryptocurrencies from simple transfers of money to complex financial
transactions. The goal is to make financial agreements or “smart contracts” [26]
between mutually distrusting participants, and automatically enforce them via
the consensus mechanism of the cryptocurrency, without relying on a trusted
third party. In particular, some works propose to run smart contracts on top
of existing cryptocurrencies (mostly, on Bitcoin). Many of these approaches,
e.g. [1,6,8,17,18,19], implement fair computations, where a set of players con-
tribute to compute a function without revealing their inputs; fairness, studied
in various forms, guarantees e.g. that any player that aborts after learning the
output pays a penalty to all players that did not learn the output. Other works
implement decentralised authorization systems [11], and contracts which allow
users to make statements, penalising those which make conflicting ones [24].

A particular kind of smart contract is the one which implements a lottery
among a set a players. Intuitively, this is an application where each one of N
players puts their bets in a pot, and a winner — uniformly chosen among the
players — gets the whole pot. Secure protocols for multiparty lotteries on Bit-
coin have been recently proposed by [2,4,5,8]. These protocols enjoy a fairness
property, which roughly guarantees that: (i) each honest player will have (on
average) a non-negative payoff, even in the presence of adversaries who play
against; (ii) when all the players are honest, the protocol behaves as an ideal
lottery: one player wins the whole pot, while all the others lose their bets.

To obtain the result, these protocols require that, to bet e.g. 1 coin, each
one of the N players must block a deposit of O(N2) coins throughout the whole
protocol3. Since the deposit grows quadratically with N , these protocols are only
practical for a small number of players. In this paper we address this issue.

3 Concurrently and independently of our work, [21] proposes a lottery protocol for
Bitcoin that requires zero deposit.

Contributions. We propose a fair protocol for multiparty lotteries, whose deposit
does not depend on the number N of players. More specifically, our protocol is
fair for any choice of the deposit value (including zero), and for any adversarial
strategy. Furthermore, if the deposit value is positive, an adversary who tries to
attack the protocol with the goal of altering the payoff of honest players, can
only lose money on average. Our protocol is based on a single-elimination tour-
nament, i.e. a tree of N − 1 two-player matches where the loser of each match is
eliminated. Overall, a complete run of the protocol requires O(N) transactions
on-chain and O(logN) time (assuming that the time to put transactions on the
Bitcoin ledger dominates the time required for communications and local com-
putations). Our protocol has been implemented as an Ethereum smart contract;
an implementation on Bitcoin would require a variant of the mechanism for
verifying the signature of transactions, to allow the malleability of input fields.

An extended version of this paper is available online at [7].

2 Statically signing chains of transactions

The current signature mechanism of Bitcoin is known to be unsuitable for signing
chains of transactions before they are put on the ledger4. Consider e.g. two
players, a and b, and three transactions, T0, T1 and T2, made as follows.

– transaction T1 has T0 as input, while T2 has T1 as input: hence the three
transactions form a chain.

– the out-scripts of T0 and T1 require signatures by both players a and b.

The players want to put the chain of transactions on the ledger, assuming that
T0 is already there. Intuitively, the players have two possible ways of proceeding:

dynamic signing: both players sign T1 and put it on the ledger. After that,
they both sign T2 and put it on the ledger.

static signing: a signs both T1 and T2 before these transactions are on the
ledger, and sends her signatures to b. Then, b adds his own signatures, and
puts both T1 and T2, one after the other, on the ledger.

Without the segregated witnesses feature [20], only dynamic signing is fea-
sible. Of course, in static signing, the addition of b’s signature to the in-script
of T1 alters its in-script. 5 Note that this will not invalidate a’s signature of T1

(because the signature does not consider the in-script), so T1 can still be put on
the ledger. However, altering the in-script changes the hash of T1, which is used
in T2.in to refer to the previous transaction. Because of this, a’s signature of T2

is no longer valid, hence b can not put T2 on the ledger.
A possible solution to this problem is to allow partial signatures, which e.g.

neglect the in part of transactions, as already done for the in-script part. In-
deed, even if T2.in (i.e., the hash of T1) is modified, the (partial) signature in

4 See https://en.bitcoin.it/wiki/Transaction_Malleability.
5 in-script and out-script are respectively referred as scriptPubKey and scriptSig in the

Bitcoin documentation.

https://en.bitcoin.it/wiki/Transaction_Malleability

T2.in-script is still valid, because it neglects the in part. More in general, we de-
fine below a signature scheme for Bitcoin transactions, allowing users to choose
which parts M of the transaction to include in the signature. In this way, once
the transaction is signed, anyone can modify the parts not in M without in-
validating the signature. The ability of modifying transactions while preserving
their signatures is called transaction malleability: while in some circumstances it
can cause security vulnerabilities [3], if used in a controlled manner it can extend
the range of applications built upon Bitcoin [1]. Note that the unsigned parts of
a transaction can be freely altered by adversaries; therefore, designing a secure
protocol must take into account for this possibility. E.g., in the previous static
signing example, b can alter T2.in so to refer to some T 6= T1 whose out-script
can be satisfied by a’s signature. In this way T becomes unredeemable. To pro-
tect against this attack, a could use a fresh key in T1.out-script, so that nothing
else can be redeemed by her signature.

We anticipate that our lottery protocol does not require the whole flexibility
of the signature mechanism outlined below, but it only relies on the malleability
of the in and in-script fields. While the malleability of in-script is already allowed
by the segregated witnesses release, that of in fields would require support from
the signature verification mechanism (e.g., a new signature flag or opcode).

Signature scheme for transaction malleability. Let

M ⊆ {in[n], in-script[n], value[n], out-script[n], lockTime |n ≥ 0}

and denote with M(T) the bitstring obtained by concatenating the parts of the
transaction T mentioned in M . We then define:

sigMk (T) = (sigk(M(T)),M) verk(T, (y,M)) = verk(M(T), y)

Hereafter, we use σ as a meta-variable for the partial signatures (sigk(. . .),M),
and σ for arrays of such pairs (we will always use the same convention for arrays).
When k and σ have the same size n, we define:

sigMk (T) = (sigMk[0](T), . . . , sigMk[n−1](T)) verk(T,σ) =
∧
i verk[i](T,σ[i])

Transaction templates. The mechanism shown above allows to statically sign
chains of transactions; further, we can also use it to statically sign chains of
the form T0 T1(y)T2, where the transaction T1(y) depends on a parameter y
such that (i) y is unknown at signing time (it will only be known later on), and
(ii) y only affects those parts of T1(y) not included in the partial signatures.
Under these assumptions, instantiating y in a later moment will not invalidate
any signature. More importantly, while there might be a large number of values
for y (and so, a large number of chains that can be put on the ledger), only one
partial static signature of T1 is needed (as well as for T0 and T2).

Parametric descriptions like the chain above are useful when designing com-
plex protocols, where the actual chain (or graph) of transactions to be put on
the ledger depend on events known after signatures have already been computed.

We now introduce a general notation for expressing transactions with parame-
ters and variants, which hereafter we name transaction templates. Our notation
shows all the possible forms of the malleable transaction parts which are used in
a protocol. Further, we will show how to statically sign such transactions (in all
their forms). We anticipate that, for our lottery protocol, the number of possible
transactions is large, while the number of needed static signatures is small.

Hereafter, we fix M = {value[n], out-script[n], lockTime |n ≥ 0} in our signa-
ture scheme, so making the in and in-script fields malleable. 6

t(x)

Variant1 〈y1〉
in[0]: t10(x1

0)[n1
0]

in-script[0]: W1
0

...

...
out-script[0](T′0,w0): OS0

value[0]: v0

...
lockTime: s

The general form of transaction templates t, t′, . . .
is shown on the right. The template t(x) is
parametrized over an array of values x, in a given
domain. Further, for its in and in-script fields, the tem-
plate describes a few variants, each of which may take
some additional parameters y. Note that out-scripts
may only refer to the template parameters x, while
in and in-scripts may also refer to their own variant
parameters y. Further, the in field refers to another
template. A template t(x) can be instantiated to a
transaction T = t(x).Variant i〈yi〉, by choosing the
variant i and the parameters. Here, T.in is set to any redeemable transaction on
the ledger which is an instantiation of the template in the in field of t.

The procedure for signing transaction templates is detailed in [7].

3 The tournament protocol

We introduce our lottery protocol for N = 2L players; each player is represented
by a bit-string in P = {0, 1}L, ranged over by a, b, We assume that each
player bets 1B in the lottery, and blocks a deposit of dB, for an arbitrary d ≥ 0.
Our protocol is based on a single-elimination tournament, where matches are
organised as a complete binary tree of L levels. The tournament involves N − 1
two-player matches: the winners of the matches at level ` ∈ 1..L− 1 play at the
next level `− 1; the winner of the match at level 0 wins the whole NB stake.

Let Π = {{0, 1}n |n ≤ L} (i.e., sequences of n bits) be the set of tree paths.
Intuitively, for every path in Π \ P we have a two-player match. For any two
paths π, π′ ∈ Π, we write π v π′ when π is a prefix of π′ (@ for proper prefixes).

Key pairs and secrets. Our protocol requires players to exchange a certain num-
ber of Bitcoin transactions, together with their signatures. To this purpose, each

6 Note that only the transactions related to our protocol need to use this form of mal-
leability. Instead, signers of transactions unrelated to the protocol can simply choose
non-malleable signatures, unless they are prepared to defend against malleability-
related attacks. For instance, if T and T′ are standard transactions on the ledger
with the same out-script, when T is redeemed by T1 with a malleable in field, an
adversary can also make T′ redeemed, by putting on the ledger a copy of T1 where
the in field is changed to point to T′.

player p generates all the following key pairs for every a, b ∈ P and for every π:

Kp(Betp), Kp(Collect), Kp(Init , a)

Kp(Win, π, a), Kp(WinTO , π, a) ε 6= π v a

Kp(Turn1 , π, a, b), Kp(Turn1TO , π, a, b), Kp(Turn2TO , π, a, b) π @ a, b

Kp(Turn2 , π, a) π @ a

Kp(Timeout1 , π, a, b), Kp(Timeout2 , π, a, b) π @ a, b

The first component in each key pair above (e.g., Collect) is a distinct label. Note
that each player generates O(N2) key pairs. We assume that the private part of
a key pair Kp(· · ·) is kept secret by p, while the public part is communicated to
the other players. For each set of key pairs Kp(X, · · ·), we denote with K(X, · · ·)
the set of key pairs {Kp(X, · · ·) | p ∈ P}. We denote with ε the empty sequence.

The outcome of a match is randomly determined with a “coin toss” protocol,
as in [2]. Intuitively, the players generate two random secrets, and exchange their
hashes; then, they reveal the secrets: the winner is determined by a function of
the two secrets (i.e., the parity of the sum of the lengths of the two secrets).
Since a player may be involved in L distinct matches, we assume that each p
generates L secrets (i.e., long random sequences of bits), one for each π @ p. The
secret of p at level π is denoted by sπp ; its public hash H(sπp) is denoted by hπp .

Overview of the protocol. Our protocol uses a number of transactions, the tem-
plates of which are in Figure 1. The protocol is organised in three phases:

initialization: the players exchange the public data, e.g. the static signatures
and hashed secrets. Then, they collect all the bets, and put on the ledger
the transactions for the leaves of the tournament tree.

execution: this phase is organised in L rounds, one for each level of the tree.
In each round `, exactly 2` two-player matches are played, by the winners of
the previous round. The possible executions of a single round are depicted
in Figure 3. The winner of the last round collects the whole stake.

garbage collection: this allows players to recover from some potential inter-
ference, to be discussed in the proof of Theorem 5.

We now comment the protocol in Figure 2. We denote the duration of each
round with τRound = 6 τLedger , following Figure 3. The transaction templates
of Figure 1 define some timelocks, which depend on a time τ1 (chosen in the
initialization phase), corresponding to the start of the execution phase.

Initialization phase. In step 1, all the players generate the signatures and secrets,
and exchange the related public data. Step 2 is needed to prevent attacks where
a player does not compute a hash from her own secret, but replays the hash of
another player. In step 3 we choose the time τ1 to be large enough so that the
initialization can be completed within τ1. In steps 4–5 the players exchange all
the static signatures needed in the execution phase. Each player p contributes his
own part of the signature, using his own keys Kp(. . .). Steps 6–8 collect the bets

Win(π, a) with ε 6= π @ a
certifies that a has won all the rounds until π

(included)

Timeout1 〈b〉
in: Timeout1(π, b, a)
in-script: sigK(Timeout1 ,π,b,a)(•)

Timeout2 〈b〉
in: Timeout2(π, a, b)
in-script: sigK(Timeout2 ,π,a,b)(•)

Turn2fst 〈b, ŝa , ŝb〉
in: Turn2(π, a, b)
in-script: ŝa , ŝb , sigK(Turn2 ,π,a)(•)

Turn2snd 〈b, ŝa , ŝb〉
in: Turn2(π, b, a)
in-script: ŝb , ŝa , sigK(Turn2 ,π,a)(•)

out-script(T,σ): verK(Win,π,a)(T,σ)
∨ verK(WinTO,π,a)(T,σ)

value: (1 + d) 2L−|π|B

Init
certifies that all players have placed their bets (and deposits)

∀p ∈ P :
{ in[p]: Betp

in-script[p]: sigKp(Betp)
(•)

∀p ∈ P :
{ out-script[p](T,σ): verK(Init,p)(T,σ)

value[p]: 1 + dB

Win(a, a) (leaf)
contains the bet (and deposit) of a at the first round

in: Init[a]
in-script: sigK(Init,a)(•)
out-script(T,σ): verK(Win,a,a)(T,σ)
value: 1 + dB

Win(ε, a) (root)

certifies that a has won the lottery

(Variants as for Win(π, a))

out-script[a](T, σ): verKa (Collect)(T, σ)
value[a]: N + dB

∀p 6= a :
{ out-script[p](T, σ): verKp(Collect)(T, σ)

value[p]: dB

Turn1(π, a, b) with π @ a, b
certifies that a and b are playing in match π,

where it is a’s turn to reveal her secret

in[0]: Win(π0, a)
in-script[0]: sigK(Win,π0,a)(•)
in[1]: Win(π1, b)
in-script[1]: sigK(Win,π1,b)(•)
out-script(T, ŝa ,σ):

(H(ŝa) = hπa ∧ verK(Turn1 ,π,a,b)(T,σ))
∨ verK(Turn1TO,π,a,b)(T,σ)

value: (1 + d) 2L−|π|B

Turn2(π, a, b) with π @ a, b
certifies that a and b are playing in match π, where a

has revealed her secret, and now it is b’s turn

Secret 〈ŝa〉
in: Turn1(π, a, b)
in-script: ŝa , sigK(Turn1 ,π,a,b)(•)
out-script(T, ŝa , ŝb ,σ):(

H(ŝa) = hπa ∧ H(ŝb) = hπb
∧ verK(Turn2 ,π,winner(a,b,ŝa ,ŝb))(T,σ)

)
∨ verK(Turn2TO,π,a,b)(T,σ)

value: (1 + d) 2L−|π|B

Timeout1(π, a, b) with π @ a, b
certifies that a lost against b in match π because

she did not reveal her secret in time

in: Turn1(π, a, b)
in-script: ⊥, sigK(Turn1TO,π,a,b)(•)
out-script(T,σ): verK(Timeout1 ,π,a,b)(T,σ)

value: (1 + d) 2L−|π|B
lockTime: τ1 + (L− |π| − 1)τRound + 2τLedger

Timeout2(π, a, b) with π @ a, b
certifies that b lost against a in match π because

she did not reveal her secret in time

in: Turn2(π, a, b)
in-script: ⊥, ⊥, sigK(Turn2TO,π,a,b)(•)
out-script(T,σ): verK(Timeout2 ,π,a,b)(T,σ)

value: (1 + d) 2L−|π|B
lockTime: τ1 + (L− |π| − 1)τRound + 4τLedger

CollectOrphanWin(π, a) with ε 6= π @ a
certifies that a was prevented by an adversary to participate in the rounds

after π, but she can collect her winnings so far (see Theorem 5 for details)

in: Win(π, a)
in-script: sigK(WinTO,π,a)(•)
out-script[a](T, σ): verKa (Collect)(T, σ)

value[a]: 2L−|π| + dB

∀p with a 6= p v π :
{ out-script[p](T, σ): verKp(Collect)(T, σ)

value[p]: dB
lockTime: τ1 + (L− |π|)τRound + τLedger

Fig. 1. Transaction templates for the lottery protocol.

Precondition: for all players p, the ledger contains a transaction Betp with value
(1 + d)B, and redeemable with key Kp(Betp).

Initialization phase:

1. each player p generates all the key pairs and the secrets sπp as in Section 3,
and broadcasts to the other players the public keys and hashes hπp = H(sπp);

2. if hπp = hπ
′

p′ for some (p, π) 6= (p′, π′), the players abort;
3. choose the time τ1 large enough to fall after the initialization phase;
4. each player signs all the transactions templates in Figure 1 except for Init, and

broadcasts the signatures;
5. each player verifies the signatures received by the others; if some signature is

not valid or missing, the player aborts the protocol;
6. each player p signs Init, and sends the signature to the first player;
7. the first player puts the (signed) transaction Init on the ledger;
8. if Init does not appear within one τLedger , then each p redeems Betp and aborts;
9. the players put the signed transactions Win(p, p) on the ledger, for all p ∈ P.

Execution phase:

for each level ` = L..1:

for each π such that |π| = `− 1, in parallel, a two-player match is played:

10. let a and b be such that Win(π0, a) and Win(π1, b) are on the ledger;
11. the players put Turn1(π, a, b) on the ledger;
12. player a puts Turn2(π, a, b).Secret〈sπa 〉 on the ledger;
13. the players wait until either Turn2(π, a, b) is confirmed, or Timeout1(π, a, b)

is enabled. In the second case, they put Timeout1(π, a, b) on the ledger; once
it is confirmed, they put Win(π, b).Timeout1 〈a〉 on the ledger, and terminate
the match at π;

14. player b computes w = winner(a, b, sπa , s
π
b), the winner of the match at π;

– if w = a, player b puts Win(π, a).Turn2fst〈b, sπa , sπb 〉 on the ledger.
– if w = b, player b puts Win(π, b).Turn2snd〈a, sπa , sπb 〉 on the ledger.

15. the players wait until either Win(π, c) is confirmed (for some c ∈ {a, b}) , or
Timeout2(π, a, b) is enabled. In the second case, they put Timeout2(π, a, b)
on the ledger; once confirmed, they put Win(π, a).Timeout2 〈b〉 on the ledger.

Garbage collection phase: if there is some unredeemed Win(π, p) with π 6= ε,
then the players put CollectOrphanWin(π, p) on the ledger.

Fig. 2. Tournament lottery Protocol.

Win(π0, a)

Win(π1, b)

0

sπa

Turn1(π, a, b)

1 τLedger

sπb

Turn2(π, a, b)

2 τLedger

Win(π,w) w = winner(a, b, sπa , s
π
b)

Timeout1(π, a, b)

3 τLedger

Win(π, b)

4 τLedger

Timeout2(π, a, b)

5 τLedger

Win(π, a)

6 τLedger

Fig. 3. Graph of the transactions in a tournament round. An edge from transaction T
to T′ means that T′ redeems T. Solid edges mean that any player can redeem; wavy
edges mean that any player can redeem, but only after a timeout. Dashed edges mean
that only the player who knows the secret on the label can redeem.

from the transactions Betp in a single transaction Init. If Init is not confirmed
on the ledger, e.g. because some player has already redeemed his bet, then all
the other players redeem their original bets. In this way, they ensure that Init
can no longer appear on the ledger, hence the protocol is aborted. Step 8 also
prevents an attack where Init is maliciously delayed so to make honest players
lose. Finally, step 9 sets up the first level of the tournament, by splitting the
stake in the Init among all the leaves of the tree, i.e. Win(p, p).

To choose τ1, note that the initialization phase requires:

– at steps 1–6, to generate all the needed O(N3) signatures and NL secrets,
and share the related public parts. This costs O(N3) time.

– at step 7, to put on the ledger the transaction Init. This costs 1 τLedger .
– after that, at step 9, to put all the transactions Win(p, p). This costs 1 τLedger ,

because it can be done in parallel.

Therefore, we choose τ1 such that τ1 ≥ currentTime +O(N3) + 2τLedger .

Execution phase. In this phase, the players play against each other. We recom-
mend the reader to examine Figure 3 for an overview of how matches are played.
Matches correspond to the nodes of the tournament tree, and so they are indexed
by tree paths π. The match at π involves the winners of the two matches π0 and
π1 of the previous round (i.e., the children of π). These winners are, respectively,
the players a and b in the transactions Win(π0, a) and Win(π1, b) which are on
the ledger at the start of the match (step 10). The goal of steps 10–15 is to put
on the ledger a transaction Win(π,w), where w is the winner at π.

Step 11 starts by redeeming both Win(π0, a) and Win(π1, b) through the
transaction Turn1(π, a, b). Note that any player (not only a and b) can perform
this step, since everyone has the required signatures. At step 12, player a is ex-
pected to reveal her secret sπa ; otherwise, after a certain deadline, the other play-
ers can make a lose. If a chooses to reveal her secret, she must put on the ledger
the transaction Turn2(π, a, b), which redeems Turn1(π, a, b), through an input
script containing sπa . Otherwise, after 1τLedger , the timelock on Timeout1(π, a, b)
expires, allowing any other player to put Timeout1(π, a, b) on the ledger at
step 13. After that, Win(π, b) can be put on the ledger by any player, so mak-
ing a lose the match. At step 14, it is the turn of player b to reveal his secret
sπb ; otherwise, similarly to the previous steps, the other players can make b lose
after some time. If b chooses to reveal his secret, he must first compute the
winner w of the match — this is possible because b knows both secrets sπa and
sπb . Then, he must put Win(π,w) on the ledger, which redeems Turn2(π, a, b),
through an input script containing sπb . Otherwise, after 1τLedger , the timelock
on Timeout2(π, a, b) expires, allowing any other player to put Timeout2(π, a, b)
on the ledger at step 15. After that, Win(π, a) can be put on the ledger by any
player, so making b lose the match.

After the last round of the execution phase, the tournament protocol is over.
At this point, there is exactly one transaction Win(ε, a) on the ledger, for some a.
This transaction can be redeemed by a at any time, by putting on the ledger a

transaction with in-script sigKa(Collect)(•). Note that only a has the private key

needed for this signature. In this way a can obtain the whole stake of NB.

Garbage collection phase. As discussed in the proof of Theorem 5, a dishonest
player can try to cheat by forging Win transactions. When this happens, some
legit Win transactions are left orphan on the ledger: garbage collection allows
the players who contributed to these transactions to redeem their money back.
In this way the protocol remains secure, as established later on by Theorem 5.

4 Security of the tournament protocol

We assume that all the algorithms used by the players run in PPTIME with
respect to a security parameter η. A function f : N→ R is said to be negligible
iff, for some constant c ∈ N, the inequation |f(η)| ≤ η−c holds asymptotically.
We assume that all the cryptographic primitives (e.g., digital signatures, hash
functions) are secure, up-to a negligible probability of attack.

We assume that Bitcoin works as a robust public transaction ledger, where
every player can append valid transactions (which are confirmed in τLedger),
while invalid transactions cannot appear. Recent results [14] show that, in a
backbone Bitcoin protocol, this assumption holds when the honest miners hold
the majority of the hashing power (despite the negative results in [12]). For
simplicity, we assume that transactions require no fees. All our results hold even
when there is only one honest player.

Basic properties. Consider an arbitrary lottery protocol with N players, where
each player bets a certain amount bet of bitcoins to have the chance to win
N · bet . A run is a pair (β, λ), where β is the state of the blockchain when
the protocol starts, and λ is the timed sequence of public events occurred in
a (possibly partial) protocol execution. The component λ includes, e.g., the
exchanged signatures and the transactions put on the ledger after β. Each player
a uses a strategy Σa to choose which events to perform at any time in a run of the
protocol. Roughly, Σa(1η, β, λ) is a PPTIME algorithm which can observe the
whole past (β, λ), and choose the next moves (not necessarily those prescribed
by the protocol). We further allow Σa to access the local state of a, including
her private information. A strategy Σa is honest when it follows the protocol; a
player is honest when she uses an honest strategy. A run is maximal for a when
she has performed all the enabled actions prescribed by Σa .

We say that a transaction is freely redeemable by a when (i) a can use her
knowledge (including private information) to compute the needed witness, and
(ii) a can freely choose the output script of the redeeming transaction. The
wealth of a after a certain run (β, λ), denoted by wealth(a, β, λ), is the amount
of bitcoins freely redeemable at that time by a, but not by any other player.

Lottery protocols usually require players to block a deposit of bitcoins through-
out their execution (beyond the bet). Technically, we define the deposit of a as
the minimum amount of bitcoins wealth(a, β, ε)− bet such that, starting from β,

a can always perform a maximal run of the protocol (using an honest strategy),
regardless of the behaviour of the other players. Then, we say that a lottery
protocol is d-deposit if d is the maximum of the deposits of all players. Note
that, by definition, it must be d ≥ 0: otherwise, should a lose the lottery, there
would not be enough bitcoins to pay the other players.

The following theorem states that the tournament protocol requires constant
dB deposit; note instead that the protocols in [2,4,5,8] require O(N2)B deposit.

Theorem 1. The tournament protocol is d-deposit.

Lemma 1. For each level ` = L..1 of the execution phase:

1. for every π such that |π| = `, the ledger contains a transaction Win(π, a)
with value (1 + d) 2(L−`)B, for some a;

2. the round starts within time τ1 + (L− `) · τRound .

Theorem 2 exploits Lemma 1 to establish an upper bound to the completion
time of our protocol. Note that a single honest player a is enough to guarantee
termination: indeed, even if the other players do not cooperate, a can always
put all the required transactions on the ledger, after the respective timeouts.

Theorem 2. Assume that at least one player is honest, while the others can be
adversaries with arbitrary strategies. Then:

1. after τ1, either Init is on the ledger, or the protocol is aborted without any
honest players losing their wealth;

2. after Init is on the ledger, a transaction Win(ε, p) is put on the ledger within
6LτLedger , for some p (who is the winner of the lottery).

Payoff distribution. We now quantify the payoff of each player in a single run
of the protocol where all the players are honest. The payoff of a player at a
given point of an execution is the wealth difference between that point and the
beginning of the protocol. Formally, given a run (β, λ) for a, this amounts to:

Φ(a, β, λ) = wealth(a, β, λ)− wealth(a, β, ε)

Then, Theorem 3 states that, once the Init transaction has been put on the
ledger, there are only two possible outcomes of the protocol: either a player loses
1B (her bet), or she wins N − 1B (the bets of all the other players).

Theorem 3. If all players are honest, then, for all players a and for all maximal
runs (β, λ) of a such that Init ∈ λ, we have Φ(a, β, λ) ∈ {−1B, N − 1B}.

Theorem 4 below describes the probability distribution of the payoff of an
honest player in contexts where the other players are adversaries. In particular,
we will assume that adversaries follow rational strategies which, on average, will
not make them lose money (but for a negligible amount). In order to define
rational strategies, we introduce an auxiliary notion. Given a set of strategies
Σ for all players and a blockchain state β, we denote with EΦ(a,Σ, β, η) the

expected payoff of a over all the runs (β, λ) which are maximal for each player p
using Σ[p]. Then, we say that player a is rational in Σ iff for all β, there exists
a negligible f such that, for all η, EΦ(a,Σ, β, η) ≥ f(η).

Theorem 4 states that the expected payoff of each player p in a given set of
honest players H is either −1 or N −1 with probabilities, respectively, N−1/N or
1/N, up-to a negligible error. This holds when either all the players are honest
(and the deposit is arbitrary, potentially zero), or the adversaries are rational
and the deposit is greater than zero.

Theorem 4. Let H ⊆ P be a set of players, and let Σ be such that Σ[a] is
honest for all a ∈ H. If (i) H = P, or (ii) d > 0 and Σ[b] is rational for all
b ∈ P \ H, then the payoff of each p ∈ H is distributed as follows, for all β:

Pr(Φ(p, β, λ) = v | Init ∈ λ maximal) =

N−1
N + f1(η) if v = −1

1
N + f2(η) if v = N − 1

f3(η) otherwise

where f1, f2, f3 are negligible functions, and λ is a random variable, sampled so
that (β, λ) is maximal with respect to Σ.

In the presence of adversaries (i.e., H 6= P), the hypothesis (ii) is necessary.
Indeed, if adversaries are not rational, they can simply increase the payoff of
honest players by giving them money, or voluntarily losing by timeout. Instead,
if d = 0, a rational adversary can interfere with the protocol and cause the payoff
distribution to differ from the one given by Theorem 4. Remarkably, we will show
in Theorem 5 that even if the adversary can alter the payoff distribution, she can
not diminish the payoff average, which is at least negligible in all cases. Hence,
the protocol is still secure.

Honest strategies are rational. Theorem 5 below establishes that, even in the case
of adversaries with arbitrary strategies, for any value of the deposit (including
zero), our lottery protocol is secure, i.e. a player which follows the protocol does
not lose money, on average.

Theorem 5. Honest strategies are rational in any set of strategies Σ.

Proof (Sketch). Without loss of generality, assume that only one player, say a,
is honest, while the other N − 1 players are adversaries, with arbitrary (not
necessarily rational) strategies Σ. We need to prove that the average payoff of a
is nonnegative, up to a negligible quantity. Before Init is put on the ledger, a can
redeem her bet, so her payoff is zero. Hence, we only need to consider the case
where Init has been put on the ledger. Hereafter, we inductively define proper
transactions as follows: T is proper either if T = Init, or all the inputs of T are
proper. Note that, in a run of the protocol where all the players are honest, all
the transactions put on the ledger are proper.

We start by studying the possible attack strategies, which determine how
adversaries put new transactions on the ledger, and how they redeem existing

transactions. Adversaries can move their wealth through transactions unrelated
to the protocol. Further, they can put on the ledger any transaction obtained
by instantiating some transaction template of the protocol. In doing that, they
can exploit the malleability of in fields, and make them redeem some previous
transaction unrelated to the protocol, consuming part of their wealth in the
process. This results in an improper transaction. Its presence on the ledger is
not a problem per se, unless it can be exploited to interfere with a proper protocol
transaction — e.g., by preventing it to be redeemed, and causing the tournament
behavior to diverge from the protocol. So, we now turn our attention to how
proper transactions can be redeemed.

We first note that each out script of the protocol transactions (except for the
final transactions Win(ε, p) and CollectOrphanWin(π, p)) requires a signature
from every player, including the honest a. Hence, adversaries can only redeem
those transactions through the signatures exchanged during the initialization
phase, i.e. using some instantiation of the protocol templates. Further, every
transaction template uses its own public keys, so when a protocol transaction T
is redeemed by T′, then (exactly) one of the following cases applies:

(a) T is Init and T′ is a leaf Win(p, p), or

(b) T has an outgoing edge to T′, according to Figure 3, or

(c) T is Win(π, p) with π 6= ε, and T′ is CollectOrphanWin(π, p), or

(d) T is a final transaction.

For example, if T is a Turn1, then T′ must provide a signature made with the
keys of Turn1 or Turn1TO. So, as per item (b), T′ can only be redeemed by
Turn2 or Timeout1. By the above reasoning, and by carefully inspecting the
protocol (Figure 2) and the used transactions (Figure 1), we see that improper
transactions can not interfere with the protocol steps where a proper transaction
T is redeemed by a single-input template instantiation T′. Indeed, when such
redemption happens, T′ must be a proper protocol transaction as well. However,
this reasoning does not extend to the case where the redeeming transaction T′

has multiple inputs. In our protocol, this is only possible when T′ is a Turn1.
Indeed, consider the case when a proper T0 = Win(0π, b) is on the ledger, as
well as a proper T1 = Win(1π, a). If T0 is redeemed by Turn1 (as per item (b)),
however, we have no guarantees that such Turn1 is redeeming both T0 and T1

— because it is possible that Turn1 is instead redeeming the proper T0 together
with an improper transaction Win(1π,m), which was forged by the adversaries.
When this interference happens, the protocol continues with an improper Turn1,
and T1 is left on the ledger as an “orphan”. Therefore, player a will not be able
to participate in the current match. Note that, since Turn1 is the only multiple-
input protocol transaction, this interference can only happen at the start of a
match. After a match is started, the honest player a has at least 1/2 probability
to win the match, since a will always respect deadlines (so to avoid losing the
match by timeout), and she chose her secret sa

π in a uniformly random way
during initialization. So, either the adversaries lose by timeout, or reveal their
secrets and the match proceeds in a fair way.

We can now estimate the average payoff of the honest player a, by tracking
her composite bet throughout the tournament rounds (i.e., the sum gained by a
so far, that she must invest in further rounds). We start by noting that, at the
beginning of each round, at least one of the following must hold:

1. a has lost a previous match.
2. there is an unspent T = Win(π, a) on the ledger, and the adversaries do not

interfere: hence, T is redeemed by Turn1, and a participates in the match.
In this case, a has at least 1/2 probability to double her composite bet.

3. there is an unspent T = Win(π, a) on the ledger, and the adversaries do
interfere: so, T is not redeemed (unlike its sibling Win), and a cannot par-
ticipate in the match. The transaction T is left “orphan” on the ledger; after
1 τLedger , player a can collect the composite bet she earned so far, by putting
CollectOrphanWin(π, a) on the ledger. In this way a can redeem her current
composite bet.

Since a is honest, she will reveal her secret for a match only after Turn1
has been put on the ledger (i.e., when adversaries can no longer interfere in the
match). Note that the adversaries do not know the match result when they have
to choose whether to interfere or not. Therefore, the whole tournament is similar
to a game where a tosses L fair coins in sequence, doubling up her bet every time
she wins the flip, and losing the whole stake at the first loss. Her opponent can
choose to stop her before any of the coin tosses, but in such case she is allowed to
collect what she won so far. Since this coin game is fair, also the average payoff
of a in the tournament protocol is nonnegative. ut

5 Related work

Several lottery protocols have been investigated outside the cryptocurrency set-
ting, e.g. by [13,15,16,23,25]. In the last few years, some authors have proposed
protocols that work on Bitcoin or similar cryptocurrencies.

Concurrently and independently of our work, Miller and Bentov [21] proposed
a lottery protocol, that similarly to ours exploits a tournament tree and requires
zero deposit. Two variants of the protocol are presented: the first one only relies
on the SegWit feature [20], while the second one proposes a new signature verifi-
cation opcode, called MULTIINPUT. The first variant requires players to statically
sign a tree of O(2N) transactions. To reduce this overhead, our protocol relies
on a more flexible signature verification scheme, that allows malleability of in
fields, resulting in O(N) transactions. This malleability introduces the interfer-
ence issues discussed in Section 4. Such interferences do not make our protocol
insecure, because the average payoff of honest players is non-negative, even for
d = 0 (Theorem 5), thanks to the garbage collection phase. However, such inter-
ferences are still undesirable, because adversaries can prevent honest players from
completing the tournament. The second variant of the protocol in [21] achieves
O(N) transactions and avoids interferences through a “controlled” malleability
of in fields. This is obtained through the new MULTIINPUT opcode, which allows to

ADMM [2] ADMM [2] BK [8] MB [21] v1 MB [21] v2 Tournament Tournament
N players 2 players iter. N players N players N players N players 2 players iter.

Deposit N(N − 1) N O(N2) 0 0 d ≥ 0 d ≥ 0

Completion time 4 τLedger 4LτLedger O(N) O(L) 4LτLedger (2 + 6L) τLedger 7LτLedger

Off-chain trans. O(N2) O(N) — O(2N) O(N2) O(N2) O(N)

On-chain trans. O(N) O(N) O(N2) O(N2) O(N) O(N) O(N)

All-or-nothing yes no yes yes yes yes, if d > 0 no

Bitcoin features SegWit
SegWit

MULTIINPUT

SegWit
in-malleability

SegWit
in-malleability

Table 1. Comparison of cryptocurrency-based lottery protocols.

malleate in fields (to achieve O(N) transactions), but only within a pre-specified
set (to avoid interferences).

Table 1 summarises the comparison between our protocol and [21] (MB), and
also with the protocols in [2] (ADMM), [8] (BK). We also consider a variant of
ours and [2], called “2 players iterated”, which implement an N -players lottery
by running N−1 instances of a two-players protocol. Similarly to our tournament
protocol, these instances are composed in a tree: only the winners of a level can
play at the next one, and the winner of the root collects all the bets. In the
iterated versions, the initialization phase is performed for every match (using
independent keys/secrets), while in the non-iterated version the initialization is
done only once, at the beginning.

The first row in Table 1 quantifies the deposit: this is constant (d ≥ 0) in our
protocol, zero in [21], while in the others it grows with the number of players.
More specifically, the deposit is O(N2) in [8] and in the non-iterated version
of [2], while in the iterated version it is N : intuitively, an N -deposit at the last
round is needed to guarantee that the final winner can collect the whole N stake.

The second row quantifies the completion time of the protocol, excluding the
communication and computation time (which is marginal in practice, compared
to the time required to put transactions on the ledger). Only the non-iterated
version of [2] requires constant time; in [8] the time is linear in N , while in the
other protocols the time is proportional to L = logN .

The number of off-chain and on-chain transactions required by each protocol
is shown in the third and fourth rows. Not that all protocols require a linear
number of on-chain transactions, except for [8] and the first version of [21],
which require O(N2) transactions.

The fifth row describes whether a protocol has an ideal behaviour, where only
one player wins the whole stake, while the others lose their bets. More specifically,
we call a protocol “all-or-nothing” if, assuming rational adversaries, the payoff
of honest players is either −1 or N−1. The iterated versions of the protocols are
not “all-or-nothing”: indeed, a rational adversary can simply stop playing after
winning a match, collecting the partial winnings and making impossible for any
other player to obtain the whole NB stake (hence forcing some honest player to
gain −1 < v < N − 1B). Instead, our (non-iterated) protocol is “all-of-nothing”
when d > 0 (Theorem 4).

The last row describes which Bitcoin features a protocol requires to be ac-
tually implemented. All protocols make use of non-standard transactions, which

are currently handled by a small fraction of the miners. Note that some recent
works [6] address the issue of implementing complex protocols on Bitcoin by us-
ing only standard transactions. Both our protocol and the ones in [8,21] also rely
on the SegWit feature [20]. Additonally, our protocol requires the malleability
of in-fields, as discussed in Section 2, while the second version of the protocol
in [21] requires the MULTIINPUT opcode. This opcode would also allow to avoid
the interferences outlined in the proof of Theorem 5. The protocol in [8] assumes
resilience to malleability attacks, which can be obtained through [20].

The work [17] proposes a general model for secure multiparty computations
on cryptocurrencies, which goes beyond the features provided by Bitcoin. Apply-
ing this model to lotteries, we would obtain a protocol where the deposit grows
linearly in the number of dishonest players. This approach might also allow for
reducing the number of rounds from logN to a constant number.

6 Conclusions

We have presented a lottery protocol based on Bitcoin, where N players can
place a bet, and one of them, uniformly chosen, wins all the bets. Our protocol
is parametric w.r.t. the deposit d ≥ 0 that the players have to block through-
out the protocol. For any value of d, our protocol ensures that honest players
have a negligible average payoff, even in the presence of arbitrary adversaries
(Theorem 5). Further, for d > 0, the payoff is distributed like an ideal lottery
(Theorem 4): that is, the winner gets the sum of all the bets with probability
close to 1/N, while the other players lose their bets with probability close to
N−1/N. This holds unless the adversaries follow strategies which (on average)
make them lose money, and make honest players gain money. According to the
terminology in [2], our protocol implements a fair lottery.

Although our protocol has been crafted for Bitcoin, the underlying ideas can
be used to implement fair lotteries on other frameworks for smart contracts. This
could allow to relax the rationality assumption of Theorem 4 when the deposit is
zero. For instance, the implementations in Ethereum [10] of Miller and Bentov7

and of Atzei8 follow the structure of rounds of the tournament protocol.

Acknowledgments. The authors thank Patrick McCorry, Andrew Miller, and
Iddo Bentov for their comments on a preliminary version of this paper. This
work is partially supported by Aut. Reg. of Sardinia P.I.A. 2013 “NOMAD”.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via Bitcoin deposits. In: Financial Cryptography Workshops. LNCS,
vol. 8438, pp. 105–121. Springer (2014)

7 https://github.com/amiller/zero-collateral-lottery
8 https://github.com/natzei/constant-deposit-lottery

https://github.com/amiller/zero-collateral-lottery
https://github.com/natzei/constant-deposit-lottery

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE S & P. pp. 443–458 (2014)

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: On the mal-
leability of Bitcoin transactions. In: Financial Cryptography Workshops. LNCS,
vol. 8976, pp. 1–18. Springer (2015)

4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016)

5. Back, A., Bentov, I.: Note on fair coin toss via Bitcoin. http://www.cs.technion.
ac.il/~idddo/cointossBitcoin.pdf (2013)

6. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: ESORICS. LNCS, vol. 9879, pp.
261–280. Springer (2016)

7. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on bitcoin. Cryp-
tology ePrint Archive, Report 2016/955 (2016), http://eprint.iacr.org/2016/
955

8. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In:
CRYPTO. LNCS, vol. 8617, pp. 421–439. Springer (2014)

9. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
S & P. pp. 104–121 (2015)

10. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper (2013)

11. Crary, K., Sullivan, M.J.: Peer-to-peer affine commitment using Bitcoin. In: ACM
Conf. on Programming Language Design and Implementation. pp. 479–488 (2015)

12. Eyal, I., Sirer, E.: Majority is not enough: Bitcoin mining is vulnerable. In: Finan-
cial Cryptography. LNCS, vol. 8437, pp. 436–454. Springer (2014)

13. Fouque, P., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Financial Cryptography. LNCS, vol. 1962, pp. 90–104. Springer
(2000)

14. Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: Analysis
and applications. In: EUROCRYPT. LNCS, vol. 9057, pp. 281–310. Springer (2015)

15. Goldschlag, D.M., Stubblebine, S.G.: Publicly verifiable lotteries: Applications of
delaying functions. In: Financial Cryptography. LNCS, vol. 1465, pp. 214–226.
Springer (1998)

16. Goldschlag, D.M., Stubblebine, S.G., Syverson, P.F.: Temporarily hidden bit com-
mitment and lottery applications. Int. J. Inf. Sec. 9(1), 33–50 (2010)

17. Kiayias, A., Zhou, H., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: EUROCRYPT. LNCS, vol. 9666, pp. 705–734.
Springer (2016)

18. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS. pp. 30–41 (2014)

19. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized
poker. In: ACM CCS. pp. 195–206 (2015)

20. Lombrozo, E., Lau, J., Wuille, P.: Segregated witness (consensus layer), BIP 141,
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

21. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum (2014),
http://arxiv.org/abs/1612.05390

22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf (2008)

23. Rivest, R.L.: Electronic lottery tickets as micropayments. In: Financial Cryptog-
raphy. LNCS, vol. 1318, pp. 307–314. Springer (1997)

http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
http://eprint.iacr.org/2016/955
http://eprint.iacr.org/2016/955
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
http://arxiv.org/abs/1612.05390
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

24. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: Penalizing equivocation
by loss of Bitcoins. In: ACM CCS. pp. 219–230 (2015)

25. Syverson, P.F.: Weakly secret bit commitment: Applications to lotteries and fair
exchange. In: IEEE CSFW. pp. 2–13 (1998)

26. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

A Background on Bitcoin

Bitcoin [22] is a decentralized infrastructure to exchange virtual currency — the
bitcoins. All the transfers of currency are recorded on a public, append-only data
structure, called blockchain or ledger. Transactions are the basic elements of the
ledger, and they denote atomic transfers of bitcoins. To illustrate how Bitcoin
works, we consider two transactions T0 and T1 of the following form:

T0

in: · · ·
in-script: · · ·
out-script(T, σ): verk(T, σ)
value: v0

T1

in: T0

in-script: sigk(•)
out-script(· · ·): · · ·
value: v1

The transaction T0 contains a value v0B. This amount of bitcoins can be
redeemed by anyone who can meet the criterion specified in T0’s out-script, a
programmable boolean function. Anyone can redeem T0 by putting on the ledger
a transaction (e.g., T1), whose in field is the hash of the whole T0 (for simplicity,
displayed as T0 in the figure), and whose in-script contains values making the
out-script of T0 evaluate to true. When this happens, the value of T0 is trans-
ferred to the new transaction T1, and T0 becomes unredeemable. A subsequent
transaction can then redeem T1 by satisfying its out-script.

The transaction T0 above is said standard, because its out-script just requires
a digital signature σ on the redeeming transaction T, with a given key pair k. We
denote with verk(T, σ) the signature verification, and with sigk(•) the signature
of the enclosing transaction (T1 in our example), including all the parts of the
transaction but its in-script (obviously, because it contains the signature itself)9.

Now, assume that T0 is redeemable on the ledger when someone tries to
append T1. To validate this operation, the Bitcoin infrastructure checks that
v1 ≤ v0, and then executes the out-script of T0, instantiating its parameters T
and σ, respectively, to T1 and to the signature sigk(•). The function verk verifies
that the signature is correct: hence, the out-script succeeds, and T1 redeems T0.

Bitcoin transactions may be more general than the ones in the previous ex-
ample: their general form is displayed in Figure 4. First, there can be multiple
inputs and outputs (denoted with array notation in the figure). A transaction
with multiple outputs associates an out-script and a value to each of them, which
can be redeemed independently. Consequently, in fields must specify which out-
put they are redeeming (T0[n0] in the figure). A transaction with multiple inputs
redeems all the (outputs of) transactions in its in fields, providing a suitable in-
script for each of them. To be valid, the sum of the values of all the inputs must
be greater or equal to the sum of the values of all outputs. In its general form,
the out-script is a program in a scripting language featuring a limited set of logic,
arithmetic, and cryptographic operators. Such scripting language is not Turing-
complete, e.g., it does not allow loops. Finally, the lockTime field specifies the
earliest moment in time when the transaction can appear on the ledger.

9 Technically, ver only requires the public part of the key pair k, while sig only requires
the private part. For notational convenience, we always mention the whole key pair.

T

in[0]: T0[n0]
in-script[0]: W0

...

out-script[0](T′0,w0): OS0
value[0]: v0

...

lockTime: s

Fig. 4. General form of transactions.

The mining process. The Bitcoin infrastructure contains a large number of nodes,
called miners, which are in charge of maintaining and extending the ledger ac-
cording to the following consensus protocol [9]. To append a new block Bi of
transactions to the ledger, miners must solve a cryptographic puzzle, whose dif-
ficulty is dynamically updated to ensure that the average mining rate is of 1
block every 10 minutes. The first miner who solves the puzzle is rewarded with
newly generated bitcoins, and a small fee for each transaction in Bi (i.e., the
difference between input and output values); the other miners discard their at-
tempts, and start mining a new block on top of Bi. If two or more miners solve
the cryptopuzzle simultaneously, they create a fork in the ledger (i.e., two or
more parallel branches). At that point miners must choose on which one of the
branches to carry out the mining process; roughly, this divergence is resolved
once one of the branches becomes longer than the others. When this happens,
the other branches are discarded, and all the transactions therein are neglected.
Therefore, there is always a small probability that a transaction in Bi is dis-
carded later on, if miners choose an alternate branch. However, this probability
decreases exponentially with the number of blocks mined on top of Bi; con-
ventionally, a transaction at Bi is considered confirmed after six blocks have
been mined on top. Hereafter, we denote with τLedger the time required to put
a transaction on the ledger and confirm it (∼ 60 minutes in Bitcoin).

B Signatures of transaction templates

We define below the signature of a transaction template t(x): intuitively, this is
a set S of transaction signatures which cover all the possible actual values for
the parameters x and for the variant parameters y, in their respective domains.
Once the signatures in S have been generated and sent to a player, she can
effectively compute any instance t(v).Variant〈w〉.

Formally, let t(x) be a transaction template, with variant i taking param-
eters y. In our notation, we allow the input scripts of the variant i to include
signatures of the form sigK(z)(•), denoting the partial signature (w.r.t. M) of

the transaction t(x).Variant i〈y〉, using a key K(z) which depends on a subset z
of the parameters x and y.

Now, assume that the parameters x range over a finite domain, and that for
all (finitely many) variants Variant i〈y〉, for all (finitely many) input scripts
in-script[n] = W in i, and for all (finitely many) partial signatures Wj =
sigK(z)(•) in W, the set of keys κ(x, i, n, j) = {K(z) |y in its domain} is finite.

Under these assumptions, we build the finite set S of template signatures as
follows. For all values v in the domain of x, we denote with Tv the instance t(v)
without any inputs and input scripts (hence, the variant is immaterial). Then,
we define S =

⋃
v,i,n,j {sigk(Tv) | k ∈ κ(v, i, n, j)}.

We anticipate that in our lottery protocol the assumptions above are satisfied,
hence the players can effectively compute and share S in the initialization phase,
allowing everyone to generate the needed instances in the execution phase.

	Constant-deposit multiparty lotteries on Bitcoin

