
Enhancing Bitcoin Transactions with Covenants

Russell O’Connor and Marta Piekarska

Blockstream
{roconnor, marta}@blockstream.com

Abstract. Covenants are Bitcoin Script programs that restrict how
funds are allowed to be spent. In previous work [9], Möser et. al. im-
plemented covenants with a new Script operation that allows one to
programmatically query the transaction. In this paper, we show that
covenants can be implemented with a new CHECKSIGFROMSTACK op-
eration that verifies a signature for a message passed as an argument.
When the same public key and signature is used together with CHECK-
SIG, one can recover transaction data, which then allows one to enforce
a covenant. To illustrate our technique, we reimplement Möser et. al.’s
vault construction for securing funds against key compromise. We use
Elements Alpha, a sidechain whose Script language has the needed op-
erations.

1 Introduction

To spend funds in Bitcoin, one has to provide an input to satisfy a predicate
that is associated with the funds. This predicate is programmed in a language
called Script [11]. A typical predicate requires a digital signature for a public
key that is fixed by the particular program. However, more complex predicates
are possible.

Predicates restrict who is authorized to make a transaction. Recent exten-
sions to the Script language, such as CHECKSEQUENCEVERIFY [3], allow pred-
icates to restrict when a transaction is authorized. However, there is no way to
restrict what transactions are authorized. Once someone has the authorization
to spend funds, they may send the funds anywhere they wish.

A way to limit how funds may be spent, including specifying how much must
be spent and to what addresses, is by the introduction of covenants. Covenants
may be recursive by requiring transactions to be spent to outputs that contain
the same covenant. State can be stored and updated in these scripts allowing
one to build smart contracts that execute a state machine through a series of
transactions.

It is believed that it is impossible to introduce covenants in Bitcoin as Script
does not contain operations that allow reading of the transaction data. The only
way to interact with the transaction data is by use of CHECKSIG that verifies
a digital signature for a message built from the transaction data. Thus, some
have proposed to extend Script to support covenants by adding new operations
to interact directly with the transaction data [9].



This paper introduces a novel approach to the problem. We show that it
is possible to implement covenants in Bitcoin by adding purely computational
operations that do not access the transaction data. Instead, we leverage the
existing CHECKSIG operation to recover the signed message data that is built
from the transaction data. Then it is easy to add conditions that restrict what
transaction data is acceptable for one’s particular covenant.

To illustrate how this works, we implement Möser et. al.’s covenant for vault
transactions [9] in Elements Alpha, a Bitcoin sidechain that includes our needed
extensions to Script.

The rest of the paper is organized as follows. In the next section, we intro-
duce the basics required to understand how covenants work. Next, in Section 3,
we talk about the Elements Alpha sidechain that we used for implementation
of our solution. Section 4 describes the covenants and how they work in Ele-
ments Alpha. In Section 5, a classical use case is presented: Möser et. al.’s vault
covenant. Related work is discussed in Section 6, and we conclude in Section 7.

2 Background

In this section we discuss how Bitcoin Transactions work and what Script is.

2.1 Bitcoin Transactions

A Bitcoin transaction contains a series of inputs and outputs. The data for each
output contains its Bitcoin value and a predicate written in Script called the
scriptPubKey . The data for each input contains an outpoint , which references
a previous transaction’s output, and a scriptSig , which is the input for that
output’s predicate. The sum of the output values must be equal to no more than
the sum of the values of the outpoints referenced by the inputs. Any difference
between the two sums counts as fee that Bitcoin miners may collect for adding
the transaction to the blockchain.

2.2 Script

Script is a Forth-like, stack based language for defining predicates. Its operations
manipulate a stack of byte arrays. Input for a Script program, the scriptSig, gives
the initial state of the stack. Execution is successful when all of the program’s
operations complete and the resulting stack has a non-zero value on top.

Script is a deliberately limited language; it has conditionals but no looping
(or recursion) operations. This means that the language is not Turing complete.
These limitations facilitate static analysis of its programs. For example, only a
limited number of expensive, digital signature verification operations are allowed
per transaction, and this limit is statically checked by counting the number of
the operations appearing in the program.

The CHECKSIG and CHECKSIGVERIFY operations perform a digital signa-
ture verification of a signed hash. A signed hash is a double SHA-256 hash of



signed data generated from the transaction data. The signed data is determined
by a SigHash type which is specified by a byte that is appended to the digital
signature. For the most common SigHash type, SIGHASH ALL, the signed data
consists of the transaction data with the scriptSigs replaced by the byte 0x00.
The exception being the input corresponding program being executed. There the
scriptSig is replaced with the scriptPubKey of its outpoint, which is the script-
PubKey being executed. Later we use this exception to implement recursive
covenants.

Other SigHash types produce variants of this signed data. We will be using
one that allows us to discard all but the first input and output of the transaction
data.

3 Elements Sidechain

Elements Alpha [1] is a fork of the Bitcoin codebase that implements a sidechain
on Bitcoin’s testnet [2]. Instead of mining, a federation of signers produces one
block per minute. Coins are not minted by new blocks; instead they enter the
sidechain through a pegging process. The user sends testnet coins to a multi-
signature scriptPubKey controlled by the federation. Once confirmed, the same
value of coins are unlocked on the Elements Alpha sidechain. Elements Alpha’s
coins can be redeemed on Bitcoin’s testnet later by locking the coins on the
sidechain. Once locked, the federation will release the same value of coins on
Bitcoin’s testnet.

Elements Alpha lets us explore new features for Bitcoin without putting
the main network at risk. For example, Segregated Witness [6,7], Confidential
Transactions [8] as well as the new Script operations were all developed in Ele-
ments Alpha. In particular, the inputs in Element Alpha’s signed data include
their Bitcoin value. We will now show how these new Script operations let us
implement covenants.

4 Covenants in Elements Alpha

New operations in Elements Alpha’s Script include: CHECKSIGFROMSTACK,
CHECKSIGFROMSTACKVERIFY and CAT. Interestingly, the CAT operation used
to exist in Bitcoin Script, but it was disabled [10].

The two CHECKSIGFROMSTACK operations are similar to the CHECKSIG
operations except they perform a digital signature verification of the SHA-256
hash of a messaged passed on the stack. These operations have several ap-
plications including secure multi-party computation [5]. For the purposes of
covenants, CHECKSIGFROMSTACK is used in conjunction with CHECKSIG to
recover the signed data.

After a successful CHECKSIG operation, the digital signature and public key
together form a commitment to the signed data. If the same public key and sig-
nature are used in a successful CHECKSIGFROMSTACK operation, it provides a



cryptographic guarantee that the message passed to the CHECKSIGFROMSTACK
operation is identical to the signed data.

4.1 Recovering Signed Data

In order to present a clear example of how our solution is realized, let us take
the following stack:

signature
pubkey
message

In the Script program presented in Listing 1.1, the first line duplicates the
signature and public key, and then it appends the byte 0x01 to the end of the
signature, which is the flag for SIGHASH ALL type. In the next line, a CHECK-
SIGVERIFY is executed using the signature and the public key. If it is successful,
it means that the signature and public key form a commitment to the signed
data for the SIGHASH ALL SigHash type. This leaves the original three items on
the stack. Next, the program computes the SHA-256 hash of message data. Fi-
nally, a successful CHECKSIGFROMSTACKVERIFY ensures that the message is
identical to the signed data from the CHECKSIGVERIFY operation on the second
line. This leaves only the message on the stack which has been proven identical
to the signed data.

1 2DUP 1 CAT
2 SWAP CHECKSIGVERIFY
3 2 PICK SHA256
4 ROT CHECKSIGFROMSTACKVERIFY

Listing 1.1. Elements Alpha Script to verify that message is the signed data

Further operations can be added to enforce that the transaction data con-
tained in the signed data satisfies whatever policy the user desires to enforce.

The signed data recovery process only relies on the integrity property of
digital signatures. In essence, we are treating the signature-pubkey pair as a
cryptographic hash of message data. The three inputs, signature, pubkey , and
message, can be provided in the scriptSig by the person creating the transaction.
In the next section, we will show how to apply this technique to build a practical
covenant.

5 The Möser-Eyal-Sirer Vault

In this section, we recreate the Möser-Eyal-Sirer Vault in Elements Alpha. Möser,
Eyal, and Sirer described an implementation of covenants using a new operation,
CHECKOUTPUTVERIFY, that directly verifies if a transaction output matches a
given pattern [9]. Using this operation, they developed covenants to implement
a smart contract for a vault to help secure funds against malicious transfers.



In their scheme, funds held in the vault can only be withdrawn through a two
transaction process. The first transaction’s output has a time-lock. This intro-
duces a fixed delay, called the unvaulting period , before the second transaction
can send the funds to the destination. The purpose of the time-lock is to provide
an opportunity for the fund’s owner to detect transfers made by a malicious
party who may have obtained the vault’s private keys. During the unvaulting
period, the user has an option to use a rescue private key, kept offline, to cre-
ate a transaction that overrides the destination address of the withdrawal. This
override starts another unvaulting period, during which further overrides can be
made. This design ensures that even if the malicious party gets the rescue pri-
vate key, they still won’t be able to profit because the owner and the malicious
party end up locked in an endless battle of repeatedly resetting the target script.
Given the no-win scenario, hopefully the malicious party realizes that there is
no point in attacking in the first place.

Our implementation of the vault smart contract is composed of two Script
programs [12]. The first program is the main vault script . It holds funds in
the vault and its covenant forces that the funds are sent to a scriptPubKey
containing a vault loop script, which is the second half of the smart contract.
The vault loop script uses CHECKSEQUENCEVERIFY to enforce the unvaulting
period after which its covenant forces that the funds are sent to a destination
that was set by the main vault script’s input. Alternatively, the vault loop script
allows the funds to be sent, at any time, to another instance of vault loop script
containing a new destination address when authorized by a rescue key. In this
sense, the vault loop script is recursive.

5.1 Main Vault Script

input 1 outpoint

value

script main-vault-script

output 1 value

scriptPubKey PUSH target

vault-loop-script

SigHash type SIGHASH SINGLE

Table 1. Summary of recovered signed data for the main vault script. Items in italics
are data provided by the scriptSig input.

The main vault script reconstructs the signed data from pieces provided by
the scriptSig and from fixed constants. Table 1 summarizes the reconstructed
signed data. The items in italics are provided by the scriptSig while the other
items are fixed by the main vault script. The CHECKSIG / CHECKSIGFROM-
STACK technique described in Section 4 verifies that the reconstructed signed



data matches the actual signed data. For the public key, we require either the wal-
let or rescue key to be used. This way, the CHECKSIG is used for both covenant
enforcement and verifying the transaction is authorized.

The same value parameter is used in both the input and output of the
signed data to ensure the entire vault’s funds are moved together. We use the
SIGHASH SINGLE type to generate signed data that excludes all but the first
input and first output. This allows other inputs to cover the transaction fees.

The output’s scriptPubKey begins by pushing a target value, and it is fol-
lowed by the vault loop script. The target value is the initial “state” for the vault
loop script. It determines the scriptPubKey of the fund’s destination. The next
section will describe how vault loop script works.

5.2 Vault Loop Script

input 1 outpoint

value

script PUSH target

vault-loop-script

output 1 value

scriptPubKey target

SigHash type SIGHASH SINGLE

Table 2. Summary of signed data for
the standard redemption of funds for the
vault loop script.

input 1 outpoint

value

script PUSH target

vault-loop-script

output 1 value

scriptPubKey PUSH new-target

vault-loop-script

SigHash type SIGHASH SINGLE

Table 3. Summary of signed data for res-
cue of funds for the vault loop script.

There are two different ways to redeem the vault loop script. The primary
method is to wait out the unvaulting period and then send the funds to the
target destination. The secondary method is to use the rescue key to send the
funds to another copy of the vault loop script with a new target script.

Table 2 summarizes the standard redemption’s signed data. We allow any
public key to be used for the covenant enforcement because redemption doesn’t
require authorization. Instead, we rely on the covenant to restrict the transac-
tion’s output to the target script that is fixed by the script’s “state”, and we use
a time-lock to enforce the unvaulting period.

At any time, the owner may change the destination of the vault loop by
redeeming it with a rescue transaction that replaces the “state” with a new-
target . Table 3 summarizes the signed data for the rescue transaction. In this
case, we require that the rescue public key is use to enforce covenant as this also
verifies that the transaction is authorized.

Because the signed data includes the script being executed, we can enforce
the input and output scripts are the same. It is an example of building a recursive
smart contract composed of Scripts, even though the Script language itself does
not allow loops or recursion.



6 Related Work

In this section we compare our solution for covenants with Möser et. al.’s so-
lution [9]. Their solution proposes adding a CHECKOUTPUTVERIFY operation
to Script. Given an output index, a value, and a script pattern, CHECKOUT-
PUTVERIFY verifies that the transaction’s output at the given index has the
given value and its scriptPubKey matches the given pattern. Their script pat-
tern relies on a few ad hoc placeholders including PUBKEY, PUBKEYHASH, and
PATTERN. The PUBKEY and PUBKEYHASH placeholders provide places where
“state” variables can be changed. The PATTERN placeholder is replaced with
an instance of the script itself, allowing one to construct recursive covenants
without resorting to building Quines.

Our solution does not require patterns. Using CAT, we can assemble arbitrary
scripts from some parts taken from inputs and other parts that are fixed. Instead
of having a PATTERN placeholder or using Quines, we take advantage of the fact
that the input script is part of the signed data to build recursive covenants. We
can copy only part of the input script to the output script, leaving the rest of
the script to store the updateable “state” of a smart contract.

That said, our solution comes at significant cost. The CHECKSIGFROM-
STACK operation is as expensive as CHECKSIG, which is by far the most expen-
sive operation in the Script language. Also, CHECKOUTPUTVERIFY is designed
to be easily soft-forked in, while our solution depends on CAT, which would
require a new Segregated Witness Script version to enable it.

The next section will discuss how the implications of this work is more about
the inevitability of covenants rather than about our solution being practical.

7 Conclusion

In this paper we presented a way to implement covenants, which can limit
how funds may be spent, including specifying how much must be spent and
to what addresses. To present a specific use case, we implemented the Möser-
Eyal-Sirer vault in Elements Alpha. It would be possible to adapt it to create
vaults and other covenants for similar blockchains. In particular, if CAT and
CHECKSIGFROMSTACKVERIFY were added to Bitcoin’s Script language then
the implementation presented here could be introduced in Bitcoin.

It is important to observe that CAT and CHECKSIGFROMSTACK are pure
functions in the sense that they are functions whose outputs are computable
solely from their stack arguments. This paper demonstrates we can recover the
signed data without the needing operations that access the signed data beyond
the existing CHECKSIG operation. The fact is that the main thing stopping
signed data recovery in Bitcoin’s Script today is that it is infeasible to imple-
ment CHECKSIGFROMSTACK with the existing operations, rather that it being
inexpressible. Any new operations that would make it feasible to implement



CHECKSIGFROMSTACK would enable covenants. For example, adding primi-
tive elliptic curve and finite field operations for the Secp256-k1 curve [4] would
likely be sufficient for implementing CHECKSIGFROMSTACK.

We see that Bitcoin’s CHECKSIG operation fails to abstract away the signed
data, even if abstraction was the intention. Rather than forcing users to go
through an expensive CHECKSIGFROMSTACK to gain access to the transaction
data embedded in the signed data, it would be better and cheaper for everyone
involved to provide operations to directly access the transaction data.

References

1. Back, A.: Announcing sidechain elements: Open source code and developer
sidechains for advancing bitcoin (2015), Blockstream blog post, https://

blockstream.com/2015/06/08/714/
2. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poel-

stra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged
sidechains (2014), https://www.blockstream.com/sidechains.pdf

3. BtcDrak, Friedenbach, M., Lombrozo, E.: BIP112: Checksequenceverify. Bit-
coin Improvement Proposal (2015), https://github.com/bitcoin/bips/blob/

master/bip-0112.mediawiki
4. Certicom Research: Standards for Efficient Cryptography 2: Recommended Elliptic

Curve Domain Parameters. Standard SEC2, Certicom Corp., Mississauga, ON,
USA (Sep 2000)

5. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 418–429. CCS ’16, ACM, New York, NY, USA (2016),
http://doi.acm.org/10.1145/2976749.2978424

6. Lombrozo, E., Lau, J., Wuille, P.: BIP141: Segregated witness (consensus layer).
Bitcoin Improvement Proposal (2015), https://github.com/bitcoin/bips/blob/
master/bip-0141.mediawiki

7. Lombrozo, E., Wuille, P.: BIP144: Segregated witness (peer services). Bitcoin Im-
provement Proposal (2016), https://github.com/bitcoin/bips/blob/master/

bip-0144.mediawiki
8. Maxwell, G.: Confidential transactions (2015), plain text, https://people.xiph.

org/~greg/confidential_values.txt
9. Möser, M., Eyal, I., Gün Sirer, E.: Bitcoin covenants. In: Clark, J., Meiklejohn, S.,

Ryan, P.Y., Wallach, D., Brenner, M., Rohloff, K. (eds.) Financial Cryptography
and Data Security: FC 2016 International Workshops, BITCOIN, VOTING, and
WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected Papers, pp.
126–141. Springer Berlin Heidelberg, Berlin, Heidelberg (2016), http://dx.doi.
org/10.1007/978-3-662-53357-4_9

10. Nakamoto, S.: misc changes. https://github.com/bitcoin/bitcoin/commit/

4bd188c4383d6e614e18f79dc337fbabe8464c82 (Aug 2010), https://bitcoin.

svn.sourceforge.net/svnroot/bitcoin/trunk@131
11. Nakamoto, S.: Re: Transactions and Scripts: DUP HASH160 ... EQUALVER-

IFY CHECKSIG. https://bitcointalk.org/index.php?topic=195.msg1611#

msg1611 (Jun 2010)
12. O’Connor, R.: Covenants in Elements Alpha (Nov 2016), Blockstream blog post,

https://blockstream.com/2016/11/02/covenants-in-elements-alpha.html

https://blockstream.com/2015/06/08/714/
https://blockstream.com/2015/06/08/714/
https://www.blockstream.com/sidechains.pdf
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
http://doi.acm.org/10.1145/2976749.2978424
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
http://dx.doi.org/10.1007/978-3-662-53357-4_9
http://dx.doi.org/10.1007/978-3-662-53357-4_9
https://github.com/bitcoin/bitcoin/commit/4bd188c4383d6e614e18f79dc337fbabe8464c82
https://github.com/bitcoin/bitcoin/commit/4bd188c4383d6e614e18f79dc337fbabe8464c82
https://bitcoin.svn.sourceforge.net/svnroot/bitcoin/trunk@131
https://bitcoin.svn.sourceforge.net/svnroot/bitcoin/trunk@131
https://bitcointalk.org/index.php?topic=195.msg1611#msg1611
https://bitcointalk.org/index.php?topic=195.msg1611#msg1611
https://blockstream.com/2016/11/02/covenants-in-elements-alpha.html

	Enhancing Bitcoin Transactions with Covenants

