
Incentivizing Blockchain Forks via Whale
Transactions

Kevin Liao1? and Jonathan Katz2

1 Arizona State University
kevinliao@asu.edu

2 University of Maryland
jkatz@cs.umd.edu

Abstract. Bitcoin’s core innovation is its solution to double-spending,
called Nakamoto consensus. This mechanism provides a probabilistic
guarantee that transactions will not be reversed once they are sufficiently
deep in the blockchain, assuming an attacker controls a bounded fraction
of mining power in the network.
We show, however, that when miners are rational this guarantee can be
undermined by a whale attack in which an attacker issues an off-the-
blockchain whale transaction with an anomalously large transaction fee
in an effort to convince miners to fork the current chain. We carry out
a game-theoretic analysis and simulation of this attack, and show condi-
tions under which it yields an expected positive payoff for the attacker.

1 Introduction

Decentralized cryptocurrencies have generated considerable interest in recent
years. Bitcoin [9], the first real-world success of its kind, has laid the foundation
for subsequent decentralized cryptocurrencies in part through its innovative solu-
tion to double-spending. The solution, known as Nakamoto consensus, provides
a high-probability guarantee that an attacker cannot undo a transaction once it
is sufficiently deep in the blockchain, assuming the attacker does not control too
large a fraction of the computational resources in the network.

The idea behind Nakamoto consensus is as follows. Participants in the Bitcoin
network, known as miners, compete to solve a computationally expensive proof-
of-work puzzle. A miner who solves this puzzle is permitted to add a block
of newly confirmed transactions to the blockchain, a distributed public ledger
serializing all transactions ever made. By doing so, the miner is rewarded with
a block reward (i.e., newly minted bitcoins) and transaction fees—determined
by the payers at the time of the transaction—for all the transactions that were
incorporated in the block by the miner. The new block and its proof-of-work
are then broadcast to the network; upon verifying the block, miners will add
the block to their corresponding blockchains and continue the mining process on
their updated ledgers. Since mining is performed concurrently, it may be the case

? Work done in part while at the University of Maryland.



that conflicting versions of the blockchain, known as branches or forks, may form.
In the prescribed protocol, miners resolve this by mining on the longest branch,
breaking ties arbitrarily. Note that shorter branches are thus “orphaned,” and
any transactions in those branches are invalidated.

This opens up the possibility of double-spending if an attacker’s transaction
ends up on a branch that is orphaned (in which case the attacker can re-spend
the coins used in that transaction somewhere else). And, indeed, short branches
are orphaned frequently. For this reason, payees will generally not accept a trans-
action until it is incorporated in a block that is several layers (typically, 6) deep
in the blockchain. Recent analysis [4] shows—under the assumption that the at-
tacker controls a bounded fraction of the computational power in the network—
that the probability that a branch is orphaned decreases exponentially in its
length.

The analysis cited above, however, assumes that all parties other than the
attacker continue to follow the protocol as prescribed. It does not take into
account that other parties may be rational, and thus may deviate from the
protocol when it is in their best interests to do so. It also does not consider
the possibility that an attacker might actively try to incentivize other parties to
deviate from the protocol in an attempt to increase its own profit.

Our contributions. We consider an attacker, henceforth referred to as Alice,
who controls a minority of the computational power in the network but neverthe-
less attempts to carry out a double-spending attack against a vendor, henceforth
referred to as Bob. To do so, Alice first performs a regular transaction T with
Bob, and waits for that transaction to be several layers deep in the blockchain
(so that Bob sends Alice whatever goods were purchased by Alice in that trans-
action). Then, Alice attempts to undo transaction T by inducing a fork in the
chain at a point before T was confirmed. The fork initiated by Alice will be
shorter than the main fork that includes T , but Alice will try to “bribe” other
(rational) miners to mine on the fork by issuing a whale transaction (i.e., a
transaction with an anomalously large transaction fee) that is only valid on the
forked branch. (The terminology “whale transaction” is inspired by a possibly
erroneous bitcoin transaction1 in which the payer issued a transaction carrying
an exorbitant transaction fee of 291 bitcoins. The current recommended trans-
action fee for a no-delay transaction is 6.0 × 10−7 bitcoins per byte, so at the
current median transaction size of 257 bytes this would amount to a transaction
fee of only 1.542×10−4 bitcoins.2) Alice will of course also mine on the fork, and
if she can incentivize sufficiently many other miners to also mine on the fork via
this whale attack, then eventually the fork will overtake the main branch and
transaction T will be undone.

While the above description conveys the main idea, there are several ad-
ditional ways Alice can gain further advantage. For example, Alice may begin
building her fork before transaction T is sufficiently deep in the main blockchain,
keeping the fork private until T is confirmed by Bob. Alice can also make sure

1 cc455ae816e6cdafdb58d54e35d4f46d860047458eacf1c7405dc634631c570d
2 Based on https://bitcoinfees.21.co, accessed September 1, 2016.



to incorporate a double-spend transaction on the fork itself—conveniently, by
spending the coins to another address she owns—so that she immediately recov-
ers her money once the fork overtakes the main chain.

Note that unless Alice can incentivize other miners to mine on her fork, Alice
cannot hope for her fork to overtake the main branch. (Recall we assume that
Alice does not have a significant fraction of the computational power in the
network.) But rational miners will mine on Alice’s fork if it is more profitable
for them to do so than to mine on the main branch. In making the decision about
which branch to mine on, miners must trade off the probability of having their
mined block be on the (eventual) main branch—which is higher when mining on
the (current) main branch—against the total fee they obtain by mining a new
block—which is larger on the fork. The question then becomes: how large of a
whale transaction does Alice need to issue in order to convince miners to switch
to mining on her fork? Note further that if the whale-transaction fee is set too
large, then the attack may not be profitable overall for Alice.

In summary, the contributions of this work are:

1. We introduce and formalize the whale attack, which demonstrates that ra-
tionality should be taken into account when evaluating the security of cryp-
tocurrencies.

2. Via theoretical analysis, we establish bounds on the expected cost to Alice
of carrying out the attack.

3. We simulate the attack in order to demonstate its feasibility even when the
attacker wields a modest amount of mining power and capital.

1.1 Related Work

There is a growing body of work examining rational behavior in Bitcoin. Of
particular relevance to our analysis is the work on selfish-mining attacks, initiated
by Eyal and Sirer [3] and explored also in [12, 10], which shows how an attacker
can profitably deviate by witholding blocks it has mined in an effort to mine
additional blocks on top of those it has already mined and thus obtain more
block rewards for itself.

More closely related to this work from a conceptual point of view are a class
of attacks we call bribery attacks in which an attacker attempts to influence
other miners to mine on a fork prefered by the attacker. Bonneau [1] presents
various bribery attacks, including paying miners out-of-band to mine on a chosen
branch. Teutsch et al. [14] present a different form of bribery attack in which
an attacker issues spurious puzzles with their own payoffs (implemented using
smart contracts such as Ethereum) in an attempt to draw computational power
away from the Bitcoin network and thus increase the attacker’s proportion of
computational power. Our attack differs from these in that it relies on the Bit-
coin protocol itself as a means of payment, and does not rely on any external
mechanisms. Bonneau [1] also discusses a bribery attack in which the attacker
includes on its desired branch transactions paying certain miners; our attack,



however, incentivizes miners collectively to mine on a chosen branch rather than
singling out specific miners to mine on the attacker’s branch.

There is also a growing interest in understanding the relationship between
transaction fees and Bitcoin’s long-term health. Möser and Böhme [8] perform a
longitudinal analysis of transaction fees and examine the externalities that influ-
ence them. Kroll et al. [7], Houy [5], and Kaşkaloǧlu [6] consider the economics
of Bitcoin mining and discuss potential changes to transaction fees and their
policies in the long-term. Carlsten et al. [2] study the effect of diminishing block
rewards and the concomitant rise of transactions fees as the dominant form of
payoff for mining new blocks, and their implications for the selfish-mining attack.

2 Model

We adapt the model used by Rosenfeld [11] and Sompolinsky and Zohar [13]. We
assume that the distribution of mining power in the network remains constant,
and that an attacker Alice controls a fraction α < 0.5 of the mining power. The
remaining network consists of k mining entities each controlling a βi fraction of
the mining power. We let β =

∑k
i βi = 1− α.

Miners mine blocks according to a Poisson process with rate λ, which we
also assume remains constant. Further, we assume that the propagation of new
blocks to the network is instantaneous. Thus, we view time as being marked
by block-creation events on either the main branch or Alice’s branch. The total
payoff for mining a block on the main branch (including both the block reward
and average transaction fees) is normalized to 1; the reward for mining a block
on Alice’s branch is δ + 1, where δ is the excess transaction fee in the whale
transaction initiated by Alice. Throughout the rest of this paper, when we refer
to the transaction fee of a whale transaction, we are referring to this parameter δ.

Following each block-creation event, each mining entity (including Alice)
chooses a rational strategy that will be followed until the next block-creation
event. More specifically, Alice makes a rational decision for whether to continue
the attack or reset the attack. Similarly, once whale transactions are underway,
each mining entity i makes a rational decision whether to continue mining on
the public (longest) branch (“honest mining”) or whether to mine on Alice’s fork
(“whale mining”). At this point, the remaining fraction of mining power β can be
divided into two partitions: whale miners and honest miners. Say γi = 1 if miner i
decides to whale mine, and γi = 0 otherwise. Then a fraction q = α+

∑k
i=1 γi ·βi

of the total mining power in the network is devoted to whale mining, and a
fraction p =

∑k
i=1(1− γi) · βi = 1− q is devoted to honest mining.

The whale attack is carried out in two phases: a pre-mining phase and a race
phase. We describe the attack somewhat informally here; it is specified fully in
Appendix A.

Pre-mining phase. In this phase, Alice first tries to build a private branch
that is longer than the public blockchain. Once she has done so, she issues a
transaction txB paying some entity Bob and waits for that transaction to be
incorporated in the public blockchain n levels deep, all the while continuing



to mine on her private branch. Once txB is n levels deep, that transaction is
“confirmed” and Alice then broadcasts her private branch—which we refer to
now as Alice’s fork—along with a second transaction txA that pays out from
the same address as txB and so is a double-spending attempt; the attack then
transitions to the race phase. (For simplicity, we assume that txA pays out to
another address that Alice owns.) Note that txA is not valid if it is incorporated
on the main branch, and so Alice’s hope is that it will be incorporated on her
fork and that her fork will then overtake the public chain. To incentivize other
miners to mine on her fork, Alice ensures that txA has a large transaction fee.

In more detail, fix a parameter ` with 1 ≤ ` ≤ n + 1. The attack begins
by having Alice try to mine a private branch (as in [3, 13]) that is ` blocks
longer than the public branch. Once she does so, she issues transaction txB ,
and other miners work to incorporate it on the public branch. Meanwhile, Alice
continues to mine on her fork while waiting for txB to reach n confirmations.
Let m denote the number of additional blocks mined by Alice when txB reaches
n confirmations. The probability P (m) for a given value of m is [11, Section 4]:

P (m) =

(
m+ n− 1

m

)
αmβn. (1)

Once txB is confirmed, Alice publishes txA and her heretofore private branch
containing m + ` blocks. If m + ` ≤ n (in other words, Alice’s branch is not
longer than the main branch), the attack transitions to the race phase.

Note there is a tradeoff here: a larger value of ` will require more time before
Alice obtains a lead of ` blocks over the public branch, but ensures a longer fork
when Alice releases her double-spent transaction.

Race phase. In this phase, Alice’s fork and the main branch enter into a race.
Alice will continue to mine on her fork, and in addition will issue whale trans-
actions that are not valid on the public chain but are valid on Alice’s fork.3 We
assume for simplicity that Alice continues to issue whale transactions as her fork
grows.

The race phase can be modeled as a biased random walk. The initial state is
z = n−(m+`), where this denotes the lead of the original public branch. (If z < 0
then Alice’s fork is already longer, and so we assume z ≥ 0 in what follows.) In
each block-creation step, z increases by 1 with some probability p and decreases
by 1 with probability q = 1 − p, where p and q denote the relative fractions of
mining power devoted to the original public branch and Alice’s fork, respectively.
In accordance with Rosenfeld’s analysis [11, Section 3], the probability that z
eventually reaches the state −1 (in other words, the probability that Alice’s fork
eventually overtakes the original public branch) is

az = min(q/p, 1)z+1. (2)

Of course, if z ever becomes too large then Alice may simply abort the attack.

3 This can be achieved in several ways, e.g., via a sequence of transactions that can
all be traced back to the payer address used in txB .



While it would be interesting to analyze the expected profit Alice obtains
in general, we are more interested in determining the regime where the attack
succeeds with probability close to 1. This allows us to determine if a whale attack
is potentially feasible, without having to make any assumptions about Alice’s
risk tolerance.

3 Analysis

In this section we establish informal bounds on the expected cost to carry out the
whale attack with success probability close to 1. Since Alice’s profit is contingent
on the value of the double-spend being greater than the sum of the whale trans-
actions, the main questions we are trying to answer are “How large do the whale
transactions need to be?” and “How many whale transactions are needed?”

3.1 Simplifications and Assumptions

The attack described in the previous section is simplified in several ways, and
is not presented in full generality. Our analysis also relies on various simplifying
assumptions. We now briefly mention and justify them:

1. We assume the relative power of all miners is known.
2. Mining entities consider only their own mining power and Alice’s mining

power when making rational decisions. We make minimal assumptions about
the sophistication of mining entities in evaluating their profits. We simply
assume that each mining entity considers its own mining power and Alice’s
mining power, and evaluates whether it makes sense to “defect” and mine
on Alice’s fork under the assumption that the remaining miners continue to
mine on the public branch. (I.e., we simply evaluate whether the status quo of
Alice mining on her fork and the other miners mining on the public branch is
a Nash equilibrium for each of the other miners. We do not examine a possible
“cascading” effect which might make it profitable for miner j to defect given
that miner i defects, etc.) This serves to establish an upper bound on the
cost of the attack, since it underestimates the fraction of miners who might
switch to mine on Alice’s fork.

3. Mining entities are not “sticky.” We allow miners to change their strategy af-
ter each block-creation event. We do not assume any cost due to “stickiness”
for switching strategies.

4. Mining entities will choose the (even marginally) most profitable mining
strategy.

5. Whale mining power is kept constant throughout the race phase. We assume
that in the course of Alice’s attack, she adjusts the excess transaction fee δ
so as to keep the mining power on her fork constant. This is in contrast
to other strategies, such as keeping δ fixed throughout the race phase. The
strategy we choose to analyze allows Alice to better predict the number of
blocks it will take for her attack to succeed, since the race phase can then
be modeled as a steady-state stochastic process.



6. Alice issues whale transactions for every block on her fork until the attack
succeeds. Since mining entities always make new rational decisions following
each block event, Alice issues whale transactions until her branch is longer
than the original branch. This implies that she never aborts4 the attack and
that her budget is unbounded.

Although some of the above assumptions may not hold, we believe that in most
cases they are conservative and have the effect of increasing the cost of the
attack. Nevertheless, in Section 4 we discuss open questions related to relaxing
the above assumptions.

3.2 How Large Should Whale Transactions Be?

The first step in evaluating the cost of the whale attack is to determine what
values δ are appropriate for incentivizing a desired proportion of the network to
whale mine. To do this, we examine the decision faced by a rational miner.

Suppose miner m has mining power βm and must decide whether to whale
mine or not, under the assumption that the remaining miners (except Alice) will
mine on the public branch as dictated by the protocol.5 If m chooses to continue
mining on the public branch (i.e., γm = 0), then m receives block rewards only
if the whale attack fails. From Equation 2, the probability that the whale attack
fails is 1 − az = 1 −min(q/p, 1)z+1, where q = α and p = β here because only
Alice will mine on her fork. Conditioned on the whale attack failing, m receives
the next block rewards (which include both the reward for mining a new block as
well as any transaction fees) with probability βm/β. It follows that m’s expected
profit is given by

(1− az) · βm
p

=

(
1−

(
α
β

)z+1)
· βm

β
. (3)

(Recall we assume α < β.)

On the other hand, suppose m decides to whale mine (i.e., γm = 1). This
means that m receives block rewards only if the whale attack succeeds. The
probability that the whale attack succeeds is az = min(q/p, 1)z+1, where q =
α+βm and p = 1− q = β−βm. Conditioned on the whale attack succeeding, m
receives block rewards with probability βm/q. It follows that m’s expected profit

4 It is worth remarking that even if Alice aborts the attack, the only “costs” to Alice
are the block rewards she gave up by not mining on the public branch; the whale
transaction fees are not paid if Alice’s fork never overtakes the public branch.

5 In fact, this ignores the case where the public branch and Alice’s fork have the
same length, and the protocol allows miners to choose arbitrarily which branch to
mine on. We also ignore here the case where Alice’s fork is longer than the public
branch, and so the whale attack succeeds immediately. Taking these into account
will only increase the probability that the attack succeeds.



when whale mining is given by

az · βm
q

· (δ + 1) =

(
α+βm

β−βm

)z+1

· βm
α+ βm

· (δ + 1). (4)

(Recall that the normal block reward is normalized to 1, and the whale block
reward is δ + 1.)

Miner m will choose γm ∈ {0, 1} that maximizes its expected profit, i.e., it
will whale mine when Equation 4 is greater than Equation 3. Solving for δ for
wihch this holds, we see that whale mining is profitable for miner m when

δ > f(α, βm)
def
=

(
1−

(
α
β

)z+1)
β

· α+ βm(
α+βm

β−βm

)z+1 − 1, (5)

which is equivalent to

δ >
Pr[whale attack fails | γm = 0]

Pr[honest block | γm = 0]
· Pr[whale block | γm = 1]

Pr[whale attack succeeds | γm = 1]
− 1.

Below we tabulate minimum values of δ that make whale mining more profitable
than honest mining, as a function of the lead z of the original branch, Alice’s
fractional mining power α (rows), andm’s fractional mining power βm (columns).

z = 6
0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.20 682.40 140.20 32.33 7.54 1.29 0 0
0.25 149.56 34.54 8.11 1.44 0 0 0
0.30 37.00 8.74 1.61 0 0 0 0
0.35 9.38 1.78 0 0 0 0 0
0.40 1.88 0 0 0 0 0 0
0.45 0 0 0 0 0 0 0

z = 5
0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.15 962.74 213.41 55.96 15.89 4.36 0.76 0
0.20 226.76 59.50 16.95 4.69 0.87 0 0
0.25 63.47 18.12 5.07 1.00 0 0 0
0.30 19.39 5.47 1.13 0 0 0 0
0.35 5.84 1.25 0 0 0 0 0
0.40 1.28 0 0 0 0 0 0
0.45 0 0 0 0 0 0 0

z = 4
0.05 0.10 0.15 0.20 0.25 0.30 0.35



0.15 239.90 70.46 23.41 8.09 2.57 0.44 0
0.20 74.86 24.91 8.66 2.79 0.53 0 0
0.25 26.55 9.27 3.03 0.63 0 0 0
0.30 9.89 3.28 0.73 0 0 0 0
0.35 3.46 0.80 0 0 0 0 0
0.40 0.78 0 0 0 0 0 0
0.45 0 0 0 0 0 0 0

z = 3
0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.10 170.83 55.88 21.50 8.88 3.63 1.25 0.12
0.15 59.18 22.80 9.45 3.89 1.38 0.18 0
0.20 24.21 10.07 4.18 1.52 0.25 0 0
0.25 10.71 4.48 1.67 0.32 0 0 0
0.30 4.75 1.80 0.39 0 0 0 0
0.35 1.85 0.42 0 0 0 0 0
0.40 0.34 0 0 0 0 0 0
0.45 0 0 0 0 0 0 0

z = 2
0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.05 75.72 27.73 12.47 6.10 3.01 1.36 0.42
0.10 29.29 13.20 6.49 3.23 1.49 0.50 0
0.15 13.98 6.90 3.46 1.62 0.58 0 0
0.20 7.31 3.69 1.76 0.66 0.01 0 0
0.25 3.89 1.88 0.73 0.05 0 0 0
0.30 1.95 0.78 0.08 0 0 0 0
0.35 0.75 0.07 0 0 0 0 0
0.40 0 0 0 0 0 0 0

z = 1
0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.05 7.50 4.06 2.36 1.36 0.71 0.27 0
0.10 4.29 2.51 1.47 0.79 0.32 0 0
0.15 2.65 1.56 0.86 0.38 0.03 0 0
0.20 1.64 0.91 0.41 0.05 0 0 0
0.25 0.94 0.43 0.07 0 0 0 0
0.30 0.41 0.05 0 0 0 0 0
0.35 0 0 0 0 0 0 0

Notice that more powerful miners are more easily enticed to whale mine.
More interestingly, we observe that for certain parameters a miner m may prefer
to whale mine even if Alice does not issue any whale transactions (and even
when α + βm < 0.5)! We are not aware of this observation being made before.
Intuitively, the reason for this is that miner m earns a larger fraction of the



rewards (because it can mine a larger fraction of the blocks) when mining on
Alice’s fork, plus there is some probability that blocks mined on the main branch
will become worthless. Thus, as Alice’s fork becomes more likely to overtake the
main branch, the expected payoff to miner m increases and in some cases exceeds
the expected payoff of mining on the main branch even in the absence of whale
transactions.

Moreover, if we differentiate f(α, βm) (cf. Equation 5) with respect to α,
we see that f is strictly decreasing for α ∈ [0, 0.5). As expected, this means
that increasing Alice’s mining power α will decrease the required δ and so will
increase the effectiveness of the attack. Differentiating with respect to βm, we see
that f is strictly decreasing for βm ∈ [0, 0.5). This means that if whale mining
is profitable for a miner m, then it is also profitable for all miners who are at
least as powerful. Although we have analyzed the decision of miner m under
the assumption that other miners continue to mine on the public branch, these
observations actually show that the required δ is (possibly) even smaller than
indicated: miner m can reason that all other miners that are at least as powerful
as itself will also switch to mining on Alice’s branch, which (from the point of
view of miner m) effectively increases α, which in turn lowers the required δ.
Determining the final equilibrium is an interesting open question.

3.3 How Many Whale Transactions are Needed?

We have so far analyzed whether Alice can make it more profitable for other
miners to deviate by carrying out a whale attack, but have not yet analyzed
whether carrying out the attack is profitable for Alice! To do so, we need in
particular to evaluate Alice’s net payout, i.e., how many whale transactions she
needs to issue in order to successfully complete the attack.

To recap, the initial state in the race phase is the lead z of the original public
branch over Alice’s branch; z decreases by 1 with probability q, the proportion
of power devoted to mining on Alice’s fork, and increases by 1 with probability
p = 1 − q, the proportion of power devoted to mining on the public branch.
(Recall we assume that Alice will keep the whale mining power constant by
adjusting δ as necessary, and that she will continue doing so until her branch
overtakes the original branch.) The race phase is thus analagous to the Gambler’s
Ruin problem. Using elementary theory of random walks, one can show that the
expected number of block-creation events before reaching z = −1 is given by

E
def
= z+1

2q−1 assuming q > 0.5. Now, say E block-creation events have occured
when Alice’s fork overtakes the public branch, with EA of those on Alice’s fork
and E′ = E −EA of those on the public branch. Since EA = E′ + z + 1, we see
that the expected number of block-creation events on Alice’s branch (and hence
the expected number of whale transactions issued by Alice) is

EA =
E + z + 1

2
=

z + 1

4q − 2
+
z + 1

2
.

Now that we have established bounds on appropriate values for whale trans-
action fees and have calculated the expected number of whale transactions, we



can in principle analyze how much the whale attack costs. This is not trivial
to do analytically, since (by our assumption) the whale-transaction fee always
changes to maintain a fixed fraction of mining power on Alice’s fork. For that
reason, we determine the cost of the attack by simulation.

3.4 Simulation

AntPool F2Pool BTCC Pool BW.COM BitFury

18.8% 18.2% 16.2% 13.8% 9.4%

HaoBTC SlushPool ViaBTC BitClub Net Kano CKPool

6.4% 5.9% 4.4% 3.7% 3.1%

Table 2: Distribution of mining power among the ten largest pools (95% of the total)
from July 30–August 2, 2016 (source: https://blockchain.info/pools).

We use as our distribution of mining power the distribution among the ten
largest pools in the Bitcoin network (cf. Table 2), where we equate Alice with
the largest of those pools, so α = 0.188. Since we are interested in the expected
cost to carry out the attack with success probability 1, we only consider cases
in which the whale mining power q > 0.5. For example, we run simulations in
which δ is set so that all pools at least as large as the BTCC Pool will whale
mine, i.e., q = 0.188 + 0.162 + 0.162 = 0.532. Table 3 presents the cost of the
whale attack in terms of δ under different parameters of q and z. Our simulation
takes into account the fact that with probability α

q , Alice reclaims her whale
transaction fee.

q z = 6 5 4 3 2 1 0

0.532 2.93e+23 3.09e+22 8.03e+21 1.10e+22 2.57e+24 2.50e+21 4.40e+20
0.670 999.79 464.74 307.71 267.72 56.09 17.64 3.63
0.764 768.09 291.86 109.89 40.16 12.73 2.48 0
0.828 1265.14 417.85 135.80 42.32 11.60 1.65 0
0.887 1205.00 390.63 123.93 37.23 9.46 1.00 0
0.931 1806.67 540.75 159.34 44.66 10.69 1.12 0
0.968 2178.58 628.13 178.19 48.29 11.23 1.15 0
0.999 2598.64 723.92 198.92 52.33 11.89 1.22 0

Table 3: Simulated attack cost (sum of the whale-transaction fees) for different settings
of the whale mining power q and the lead of the public branch at the start of the race
phase z. Values shown are averages across 106 simulations for each pair of q and z.

To interpret our results, recall that δ is a lower bound on the value of whale
transaction fees for whale mining to be more profitable for other miners. Thus,
the cost of the attack is marginally more than the sum of the whale transactions



in our simulations. Finally, recognize that the table does not give the complete
picture with regard to rationality of the attack from the point of view of Alice,
as we need to evaluate whether Alice’s net gain is greater than she would have
achieved by following the protocol honestly. On the other hand, note that when
the whale attak is successful, Alice reaps all the block rewards from her m + `
pre-mined blocks.

4 Discussion

Our simulations return a number of interesting results. Immediately, we can
see the impact that pre-mining has on the cost of the whale attack. While pre-
mining ` blocks may take a long time, the time required can be improved if Alice
employs selfish mining strategies [13].

Our results also show that centralization of mining power increases the in-
centive for other miners to be influenced by a whale attack since, as shown in
Section 3.2, larger pools are more easily bribed than smaller pools. In our simula-
tion, the three largest pools (which include Alice) already combine for a majority
of whale mining power. Since q = 0.532 is only slightly above a majority, the
cost of the attack is exorbitant. However, simply adding the fourth largest pool
to give q = 0.670 dramatically reduces the cost of the attack. From Table 3 for
z = 6, we see that Alice’s cheapest option is to aim for q = 0.764. Attempting
to bribe the smaller pools, which would allow z to converge faster, would not
be cost efficient. Now, consider if mining were completely decentralized, and the
largest pools wielded less than 0.01 of the mining power—the whale attack would
then be incredibly costly for Alice to carry out.

Finally, consider that Alice only wields α = 0.188 of the mining power in our
simulations. In the past, mining pools have occasionally enjoyed much larger
shares of mining power, even exceeding a majority on some occasions. A larger
attacker could dramatically reduce the cost of the attack. Taking this a step
further, our assumptions from Section 3 already induce an upper bound on the
cost. We address these assumptions below, and discuss how they might fail to
hold in practice.

– A more sophisticated mining entity who considers the decisions of other
mining entities could dramatically lower the necessary δ for whale mining
to be rational. In practice, cooperative mining entities would achieve similar
effects, since they could certainly account for each other’s mining power when
evaluating their collective profit.

– In practice, if a mining entity mines a large whale block, it would likely be
in its best interest to “stick” to whale mining. It may even be rational for
them to issue their own whale transactions to ensure the success of Alice’s
branch. From Alice’s perspective, the best case (other than if she were to
reclaim every whale transaction) would be to have different mining entities
each mine a single whale block. If these entities combine for a majority of
whale mining power, it is probable that further whale transactions would
not be needed at all.



– In practice, a marginal profit for whale mining over honest mining may not
be sufficient, and we would need to consider the “cost of deviation.”

– In practice, it is not necessary for Alice to keep whale mining power con-
stant, especially if Alice does not require the whale attack to succeed with
probability 1.

– Alice may choose to abort the attack if her fork falls too far behind the
public branch, since continuing the whale attack would not be rational if the
attack unluckily takes longer than expected.

5 Conclusion

Cryptocurrencies fail to fit into established theoretical frameworks for secure dis-
tributed systems. Instead, their security relies on the assumption that a majority
of miners, as measured by their computational resources, will behave honestly.
In this regard, researchers have uncovered many deviant mining strategies that
rational miners may employ.

In this work, we presented the whale attack, in which a minority attacker
increases her chances of double-spending by incentivizing rational miners mining
on her fork. Our work is primarily a proof-of-concept showing that a whale attack
can be feasible for a minority attacker. We leave open the challenges of modeling
the cost of the attack more precisely and exploring the strategy space when
combining the whale attack with other mining attacks.

Acknowledgments

We thank Elijah Soriah and Andrew Miller for their valuable feedback, and the
faculty and students of the CAAR REU program for the wonderful experience.
Work of Kevin Liao was supported by NSF Research Experience for Undergrad-
uates (REU) award CNS-1560193. Work of Jonathan Katz was supported in part
by NSF award CNS-1561209.

References

1. Joseph Bonneau. Why buy when you can rent? Bribery attacks on Bitcoin-style
consensus. In Financial Cryptography and Data Security Workshops (BITCOIN,
VOTING, and WAHC), volume 9604 of Lecture Notes in Computer Science, pages
19–26. Springer, 2016.

2. Miles Carlsten, Harry Kalodner, S. Matthew Weinberg, and Arvind Narayanan.
On the instability of Bitcoin without the block reward. In ACM Conference on
Computer and Communications Security, pages 154–167. ACM, 2016.

3. Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulner-
able. In Financial Cryptography and Data Security, Lecture Notes in Computer
Science, pages 436–454. Springer, 2014.



4. Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone pro-
tocol: Analysis and applications. In Advances in Cryptology—Eurocrypt 2015,
Part II, volume 9057 of Lecture Notes in Computer Science, pages 281–310.
Springer, 2015.

5. Nicolas Houy. The economics of Bitcoin transaction fees, 2014. GATE Working
Paper 1407, available at http://dx.doi.org/10.2139/ssrn.2400519.

6. Kerem Kaskaloglu. Near zero Bitcoin transaction fees cannot last forever. In
Intl. Conference on Digital Security and Forensics (DigitalSec), pages 91–99. The
Society of Digital Information and Wireless Communications, 2014.

7. Joshua A. Kroll, Ian C. Davey, and Edward W. Felten. The economics of Bit-
coin mining, or Bitcoin in the presence of adversaries. In 12th Workshop on the
Economics of Information Security (WEIS), 2013.

8. Malte Möser and Rainer Böhme. Trends, tips, tolls: A longitudinal study of Bit-
coin transaction fees. In Financial Cryptography and Data Security Workshops
(BITCOIN, WAHC, and Wearable), volume 8976 of Lecture Notes in Computer
Science, pages 19–33. Springer, 2015.

9. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
10. Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining:

Generalizing selfish mining and combining with an eclipse attack. In IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), pages 305–320. IEEE, 2016.

11. Meni Rosenfeld. Analysis of hashrate-based double spending, 2014. Manuscript
available at https://arxiv.org/abs/1402.2009.

12. Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal self-
ish mining strategies in Bitcoin. In Financial Cryptography and Data Se-
curity, Lecture Notes in Computer Science. Springer, 2016. Available at
https://arxiv.org/abs/1507.06183.

13. Yonatan Sompolinsky and Aviv Zohar. Bitcoin’s security model revisited, 2016.
Manuscript available at https://arxiv.org/abs/1605.09193.

14. Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies mine
their own business. In Financial Cryptography and Data Security, Lecture Notes
in Computer Science. Springer, 2016.



A Whale Attack Algorithm

Algorithm 1 Whale attack

1: procedure Reset
2: original branch← longest branch
3: Alice branch← longest branch
4: l count← 0 . len(Alice branch)− len(original branch).
5: Issue txA on Alice branch.
6: Mine at head of Alice branch.

7: procedure Pre-mine(l, n)
8: Reset
9: while l count < l do

10: new block ← Listen . Listen for block creation event.
11: if new block on Alice branch then
12: l count← l count + 1
13: else if l count = 0 then . len(Alice branch) < len(original branch).
14: Reset
15: else . len(Alice branch) ≥ len(original branch).
16: l count← l count− 1

17: Issue txB on original branch.
18: n count← 0
19: m← 0

20: while n count < n do
21: new block ← Listen
22: if new block on Alice branch then
23: m← m + 1
24: else
25: n count← n count + 1

26: Publish Alice branch.
27: if m + l ≤ n then . len(Alice branch) ≤ len(original branch).
28: Race (n− (m + l))

29: procedure Race(z)
30: Issue tx on Alice branch.
31: while z > −1 do
32: new block ← Listen
33: if new block on Alice branch then
34: z ← z − 1
35: Issue tx on Alice branch.
36: else
37: z ← z + 1


