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Abstract. Bitcoin exchanges operate between digital and fiat currency
networks, thus providing an opportunity to connect real-world identities
to pseudonymous addresses, an important task for anti-money laundering
efforts. We seek to characterize, understand, and identify patterns cen-
tered around exchanges in the context of a directed hypergraph model
for Bitcoin transactions. We introduce the idea of motifs in directed
hypergraphs, considering a particular 2-motif as a potential laundering
pattern. We identify distinct statistical properties of exchange addresses
related to the acquisition and spending of bitcoin. We then leverage this
to build classification models to learn a set of discriminating features,
and are able to predict if an address is owned by an exchange with
> 80% accuracy using purely structural features of the graph. Applying
this classifier to the 2-motif patterns reveals a preponderance of inter-
exchange activity, while not necessarily significant laundering patterns.
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1 Introduction
Bitcoin’s decentralization makes it difficult to regulate and investigate by law en-
forcement. This represents a vulnerability in government anti-money laundering
(AML) efforts [4]. Conventional AML efforts focus on the Know-Your-Customer
(KYC) process, in which banks and other financial services must verify the iden-
tity of their customers, monitor transactions, and report suspicious behavior to
government entities. As such, government AML and KYC efforts utilize per-
fect knowledge of identity but incomplete knowledge of financial transactions,
which remains in the control of the banks [12, 13]. In contrast, law enforcement
generally has no knowledge about bitcoin user identities to use in detecting
anomalous behavior, but access to the blockchain grants complete knowledge
of transactions. This motivates the desire to detect money laundering through
techniques that do not rely on identity information, such as transaction or user
patterns. In particular, patterns centered around exchanges are important, as
they provide arguably the most important link between Bitcoin and fiat cur-
rency networks. Moreover, exchanges are navigating evolving legal precedent to



be AML compliant [1, 2]. In 2015, FinCEN fined Ripple Labs in the first act of
civil enforcement against a Virtual Currency Exchange for failing to implement
a proper AML program [17].

We model Bitcoin transactions as a directed hypergraph (dirhypergraph),
which naturally represents the multi-way relation between addresses and trans-
actions (Section 2). This is distinguished from previous analyses [15, 16] which
use graph models with strictly binary edges, whether at the address or tx level.
We define motifs in dirhypergraphs as small sub-graph patterns, and introduce
a small 2-motif involving exchanges which we call “short thick bands” (STB) as
a potential laundering pattern. We identify several patterns in the behavior of
exchange-owned addresses that differ from non-exchange addresses (Section 3).
For example, where regular addresses are likely to be sinks [16], simply accu-
mulating bitcoin, exchange addresses typically keep a near-zero balance. Third,
we explore the possibility of applying machine learning techniques to classify
latent attributes of addresses (Section 4). In particular, we focus on whether or
not it is possible to predict whether a given address is owned by an exchange
or not, and the role of both labeled and putative exchanges in STB patterns.
Finally, we seek to understand whether the pattern of exchange use in STBs
reveals potential laundering activity, but conclude that what can be identified is
a preponderance of inter-exchange activity.

2 Bitcoin Transaction Motifs in a Directed Hypergraph

Bitcoin transactions have a natural graphical structure, one form of which is
shown on the left of Fig. 1. Vertices are transactions E0, . . . E3, while arcs model
inputs and outputs labeled by the Bitcoin address a1, . . . , a6, weighted by the
quantity. We note some common activities such as change making and aggre-
gation. Coinbase transactions are indicated by the vertex SRC in blue, while
unspent transaction outputs (UTXOs) are combined into a single sink vertex.

Fig. 1. (Left) Bitcoin transactions as a labeled multigraph. (Right) Bitcoin transactions
as a bipartite multigraph.

But in analytical tasks, such as detecting money laundering, it is perhaps
more important to focus on addresses (arc labels ai) than the transactions Ej .
And while discouraged in Bitcoin, reuse of addresses is legal and somewhat com-
mon. To treat addresses as “first class objects” we create new vertices for each
unique address, producing the bipartite graph structure on the right of Fig. 1.
Square vertices are transactions Ej , while the circles are addresses ai (addresses



currently with an UTXO are red). Input arcs from addresses to transactions are
now distinguishable from output arcs from transactions to addresses, and ad-
dress reuse can create looping structures, such as shown in change-making back
into a3 as an output of E2.

We consolidate by combining quantities on multi-arcs, producing the directed
hypergraph [3, 5] in Fig. 2. Dirhypergraphs are characterized as directed bipartite
graphs with two kinds of vertices, with connections only between vertices of
different types, but possibly multiple inputs from and outputs to each. For us,
transaction (square) vertices act as directed hyperarcs. Where an arc in a graph
connects a single tail vertex to a single head vertex, hyperarcs connect multiple
input (tail) addresses to multiple output (head) addresses (round vertices).

Fig. 2. Bitcoin transactions as a directed hypergraph.

Fig. 3. Graph motifs: (Far Left) The single undirected graph 2-motif (above) with its
three directed motifs α, β, and γ (below), including the two isomorphic α, α′ patterns.
(Right) The three undirected 3-motifs and their directed versions.

Hypergraphs and directed hypergraphs are well known in math and computer
science, and can provide significant advantages over regular graphical structures
when data are complex, with multiple inputs and outputs as in our case due
to address reuse. Identifying subgraphs indicating potential laundering suggests
the potential significance of hypergraph motifs. In network analysis, motifs are
small subgraphs which are represented with statistical significance [11]. Our
research group appears to be the first to consider dirhypergraph motifs, which
we generalize directly from graph motifs. Fig. 3 shows all the undirected and
directed motifs for two and three edges/arcs. A k-motif is one possible way that
k connected (intersecting) edges can be structured, with a range of possible
numbers of vertices sitting as tails and heads of the k edges.



The simplest dirhypergraph Bitcoin pattern is the 2-motif,4 illustrated on the
left side of Fig. 4 as a dirhypergraph pattern. As in Fig. 2, the two transactions
E1, E2 are square vertices, and addresses circles (circle color will be addressed
below). Note that any particular address can sit on either the tails (inputs) or
heads (outputs) of any transaction, and indeed, more than one transaction.

Fig. 4. A 2-motif in a dirhypergraph: Two transactions E1, E2 with sets of tail and
head vertices T1, H1, T2, H2 respectively. (Left) Generic. (Center) A linear STB. (Right)
A circular STB.

Formalizing 2-motifs, assume a non-empty finite set of vertices A = {ai}
and two hyperarcs Ej = 〈Tj , Hj〉 , j = 1, 2, with tails and heads Tj , Hj ⊆ A
(nonempty). The set M = {E1, E2} is a 2-motif if there is at least one pair of tails
and heads in each hyperarc which intersect, that is, if

⋃
X,Y ∈{H,T}X1 ∩ Y2 6= ∅.

The potential intersections are detailed in Table 1. For example, an address sits
on a γ pattern if it is in both T1 (the blue vertices in Fig. 4) and T2 (the green),
that is, in the tails of (inputs to) both transactions (e.g. the lowest left address
in Fig. 4). The analogous graph pattern γ is shown in Fig. 3, with the two
edges pointed outward. Note that in comparison with Fig. 3, here we also allow
self-loops identified in the L1, L2 patterns.

Pattern Condition Description

α H1 ∩ T2 6= ∅ Forward 2-chain
α′ T1 ∩H2 6= ∅ Reverse 2-chain
β H1 ∩H2 6= ∅ Inward 2-star
γ T1 ∩ T2 6= ∅ Outward 2-star
L1 T1 ∩H1 6= ∅ Self-loop on E1

L2 T2 ∩H2 6= ∅ Self-loop on E2

Table 1. Participation of addresses in a 2-motif.

The left of Fig. 5 is an abstraction of a 2-motif, where each circular vertex
represents one of the patterns in Table 1, standing in for the entire set of ad-
dresses playing that role.5 The right is the same abstraction, but now with the
counts of the number of addresses in each role for transactions between Jan 12
2015 and April 21 2015.6

4 Terminologically, we can call these hypermotifs or hypergraph motifs, but for sim-
plicity here we will just call them motifs.

5 We include addresses in exactly one intersection, ignoring addresses in only a tail or
head of one of the transactions, and also addresses in more than two intersections.

6 Note the similarities of the counts for α and α′, on the one hand, and L1 and L2,
on the other, due to isomorphism with respect to the ordering of E1 and E2.



Fig. 5. (Left) Generic 2-motif. (Right) Instantiated with counts for days 2200-2299.

Beyond just identifying dirhypergraph motifs, we are interested in motifs
which may or may not involve certain addresses, in our case, exchanges, and their
distribution within certain kinds of patterns. In Fig. 4, exchanges are shown as
black addresses. A short thick band (STB) is then a pattern where a quantity
of Bitcoin is purchased from fiat currency, held for a while as Bitcoin, and then
converted back to fiat currency. When an STB moves Bitcoin from one exchange
address to a different one, we can call it linear; and when it returns it to the
same exchange address, circular. More specifically, STBs are 2-motifs where:
– Two transactions intersect in an α or α′ chain only;
– An exchange is included in both an input of the first and an output of the

last transaction; but
– No exchange is an intermediate address in the transaction.

STBs could exist for many reasons, including financial speculation, simple
user convenience, repeated purchases, remuneration, remittance, or fund man-
agement. Our interest is considering the hypothesis that STBs could be used
as a potential laundering pattern. Moreover, we recognize that as a laundering
pattern, it would not be very extensive. In this work we are begining with the
simplest possible such pattern.

To formalize STBs, call a motif “pure” if only one pattern from Table 1 is
present (this is not the case in the left side of Fig. 4), and otherwise “mixed”.
Then denote e(a ∈ A) to mean that a is an exchange, and e(X ⊆ A) to mean
that X has an exchange: ∃a ∈ X, e(a). We then can define an STB as follows.

Definition 1 (STB). A 2-hypermotif M = {E1, E2} is a linear STB if one
and only one of the following holds:

1. It is a pure α 2-motif with e(T1) ∧ e(H2) ∧ ¬e(H1 ∩ T2); or
2. It is a pure α′ 2-motif with e(H1) ∧ e(T2) ∧ ¬e(T1 ∩H2).

M is a circular STB if one and only one of the following holds:
1. It is a mixed linear α and α′ 2-motif with e(T1 ∩H2) ∧ ¬e(H1 ∩ T2); or
2. It is a mixed linear α′ and α 2-motif with e(H1 ∩ T2) ∧ ¬e(T1 ∩H2).

Note that no STB can have a self-loop. But because of the α, α′ isomorphism
noted above, it is sufficient to assume that a linear STB is a pure α pattern, and
a circular STB is a mixed α, α′ pattern, with

e(T1) ∧ e(H2) ∧ ¬e(H1 ∩ T2), e(T1 ∩H2) ∧ ¬e(H1 ∩ T2)

respectively. Fig. 4 shows a linear (center) and circular (right) STB.



3 Descriptive Statistics

Given the nature of exchanges, and their primary function of converting between
bitcoin and other currencies (including fiat and other alt coins), we question
whether exchange addresses exhibit a different type of behavior from address
owned by regular users of the network.

We downloaded the Bitcoin blockchain data using the Bitcoin Core Client,7

and built a custom parser to convert the raw data into the dirhypergraph struc-
ture described in Section 2. We used data from the first transaction in the net-
work up to April 22 2015, encompassing 72.7M unique addresses (vertices), in-
volved in at least one of 66.3M transactions (hyperarcs) in our dirhypergraph.
Addresses known to be exchanges were drawn from the WalletExplorer listing,8

call these “labeled”. Some exchanges are associated with several wallets (“cur-
rent”, “output”, “old”). The full list we use is shown in Appendix A. While
labeled addresses are presumed to be actual exchanges, the number of exchange
addresses which are not listed as such is hard to judge for many reasons. At
least, the WalletExplorer listings began on April 23 2011, while we know that
exchanges have been around since 2010. Additionally, Mt. Gox, a substantial
contributor over that time, was not included. There are still 2.44M labeled ad-
dresses (3.36 % of the total addresses), and 6.76M transactions involving an
exchange (10.2 % of total transactions). Daily activity is summarized in Fig. 6,
with addresses involved in several transactions in a single day counted once.
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Fig. 6. Daily activity in each dirhypergraph.

7 https://bitcoin.org/en/download
8 https://www.walletexplorer.com, accessed January 16 2016.



Since our dirhypergraph presents as a bipartite graph of addresses and trans-
actions, the in-degree of an address is actually the number of transactions on
which an address serves as an output, and vice versa for out-degree. While the
in- and out-degree distributions for both address types follow a power law, with
the distributions having no significant difference using a 2-sample KS test, Ta-
ble 2 shows several interesting aspects. Where 4.7% of unlabeled addresses are
sinks – simply accumulating bitcoin and never redistributing it, resulting in an
out-degree of zero – this drops to < 0.1% for labeled addresses. Also labeled
addresses are more likely to have equal and positive in- and out-degrees. This
behavior for labeled addresses is consistent with the use and function of ex-
changes, and for unlabeled addresses it is consistent with previous results [16],
although to a much lesser extent. We attribute the decline in the proportion
of sink addresses to the general growth of Bitcoin, but more importantly the
sustained trading phase [6] it has been in, dwarfing activity in the initial phase.

Query Labeled Unlabeled

In-degree > 0, out-degree = 0 2,123 0.087% 3,297,725 4.696%
In-degree > 0, out-degree > 0 2,435,472 99.91% 66,914,170 95.29%
In-degree = out-degree > 0 2,356,530 96.67% 64,305,459 91.58%
In-weight > 0, out-weight = 0 2,123 0.087% 3,297,195 4.696%
In-weight > 0, out-weight > 0 2,435,472 99.91% 66,914,166 95.29%
In-weight = out-weight > 0 2,421,944 99.35% 65,658,855 93.51%

Table 2. Comparing labeled and unlabeled address’ degrees and weights.

Fig. 7 shows the cumulative distribution of weights in bitcoin (BTC), total
on the left and average on the right. Unlabeled addresses have a much better sep-
aration between the in- and out-weight, suggesting that nonexchange addresses
tend to keep a positive balance of bitcoin while exchanges keep zero, or near-
zero, balances. The majority of exchange addresses have both an average and
total transaction weight between 0.01 and 0.1 BTC, shown by the large jump
in the figure. Roughly 50% of labeled addresses sit in this bucket, compared to
about 30% of unlabeled addresses.
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Fig. 7. Cumulative percent of addresses with total (left) or average (right) input and
output weights.

We next examine 2-motifs, STBs, and how exchanges are involved in them. If
there arem transactions in a day, then there are at most

(
m
2

)
possible 2-motifs. Of



our 40.0B 2-motifs, 10.3B are pure linear α or α′ patterns, just 42.4M of which
involve exchanges. 741K of those are STBs, including 727K linear and 13.4K
circular. The volume of 2-motifs precludes the opportunity to do a comparison
between STBs and non-STB 2-motifs, so instead we focus on just STBs.
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Fig. 8. Counts (left) and proportions (right) of labeled addresses on the inputs and
outputs of STBs.

The number and proportion of addresses that are labeled as exchanges on the
inputs and outputs is shown in Figure 8.9 The number of labeled input addresses
ranges from 1 to 635, while output addresses range from 1 to 1937. However,
when the two clear outlier STBs are removed, the max number shrinks to 376.

According to the well known heuristic in Bitcoin to group all addresses that
are inputs into the same transaction as being owned by the same entity [10, 14,
16], the expected proportion of labeled inputs should be 1, because if a single
address is labeled, then all others are labeled as a consequence. Orders of magni-
tude more STBs do in fact have all inputs labeled, but many do not. This could
be because the WalletExplorer data is incomplete, because it uses a different
method for aggregating exchange wallets, or because they should in fact not be
labeled. Yet, in every STB with multiple labeled input addresses, every address
is owned by the same exchange – that is, every input is from a single exchange
label. Interestingly, this is not the case for outputs of STBs. Of the 739.8K STBs,
63.4K (8.57%) have multiple exchange labels in the outputs (“multi-out STBs”),
48.1K (75.9%) of which have exactly two labels. Multiple exchanges on outputs
of a single transaction could be due to mining pool payouts, but on outputs of
STBs it is more likely indicative of inter-exchange activity.

4 Classifying and Labeling Exchange Addresses

While exchange addresses comprise a small percent of the Bitcoin network, they
are of growing importance outside of the Bitcoin world, as they provide po-
tentially the only avenue for connecting real-world people with pseudonymous

9 Recall that this is at the address level, and each exchange has a set of addresses
they own. The frequency of each exchange (e.g. BTC-e.com) in STBs is shown in
Figure 10 in the Appendix, and is highly correlated with the number of addresses
each exchange has, see Figure 11.



Bitcoin addresses. Being able to identify exchanges in the network is then a crit-
ical task, as it enables one to connect transactions or addresses of interest to the
point at which they enter or exit the Bitcoin network.

We can leverage the different characteristics of exchange and non-exchange
addresses to construct a machine learning model to classify an address as an
exchange or not. In these experiments we use data from September 29 2011,
roughly 100 days after exchanges first appear in our data, until April 22 2015.
For every address we extract a set of features that numerically characterizes it,
e.g. out-degree, total in-weight. Addresses are then assigned a class label cor-
responding to whether or not they are labeled as an exchange. The goal of the
model is to learn a set of features and weights that can accurately discriminate
between the two classes. Given the immense class imbalance (far fewer exchange
addresses), we randomly sample an equal number of labeled and unlabeled ad-
dresses for training and testing the model. To account for the random sampling,
10 independent trials are run, and average results are reported.

Five different classifiers’ results are summarized in Table 3.10 AdaBoost and
random forests perform the best, and are far superior to the remaining three,
both yielding an F1 score of over 0.99. In the case of random forests, on average
only 2,587 out of 972,866 test addresses were incorrectly predicted, falsely classi-
fying 1,190 non-exchanges as exchanges, and 1,397 exchanges as non-exchanges.
Moreover, the incredibly low variance of these models indicates they are much
more robust than the others, performing well across all random samples.

Model F1 Recall Precision

Random Forest 0.9973 +- (0.0001) 0.9976 +- (0.0001) 0.9971 +- (0.0001)
AdaBoost 0.9944 +- (0.0001) 0.9974 +- (0.0001) 0.9915 +- (0.0003)
Linear SVM 0.8291 +- (0.0833) 0.8396 +- (0.1514) 0.8573 +- (0.1209)
Perceptron 0.2075 +- (0.3029) 0.3034 +- (0.4557) 0.2210 +- (0.2053)
Logistic Regression 0.0014 +- (0.0001) 0.0007 +- (0.0001) 0.2755 +- (0.0304)

Table 3. Results for exchange address classification. All results shown are mean+−std
over the 10 runs.

Equally important, or perhaps even more important, than achieving such a
high accuracy is understanding what it is about exchange addresses that facili-
tates the result. One way to quantify this is looking at the “feature importance”
values that are calculated by the classifier. The top 5 features and their impor-
tance in the random forest model are: (1) # sibling exchanges (0.613); (2) #
successor exchanges (0.184); (3) # predecessor exchanges (0.072); (4) # siblings
total (0.044); (5) total out-weight (0.015).11 It is not surprising that, by far, the
most important feature is the number of exchange siblings. Figure 9a shows the
substantial difference in the distributions for exchange siblings. Again, according

10 All experiments were run using Python 2.7 and the scikit-learn and numpy packages.
11 For an address a, siblings are addresses that have been a co-input or co-output,

successors are addresses that have been an output when a was an input, and prede-
cessors are addresses that were an input when a was an output.



to the common address group heuristic, if you are siblings with numerous ex-
change addresses then it is likely you are also an exchange address. Moreover, it
is likely that you are an exchange address owned by the same exchange that your
siblings are (c.f. Section 3). From a network science perspective, homophily [9]
tells us that vertices of one type tend to interact with vertices of the same type.
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Fig. 9. Distribution of how many exchange addresses siblings (left) or total siblings
(right) each address has. These distributions were drawn from a random sample of
100K exchanges and 100K non-exchanges.

Incorporating features related to the exchange labels clearly produces high
quality results. However, it may restrict the capability of our model, failing to
generalize well to new data which is not labeled, or handling incomplete labeling
as we have in our dataset. To test this a second set of experiments is performed,
identical to those described above except all features related to exchange labels
are removed. Table 4 summarizes the new results.

Model F1 Recall Precision

Random Forest 0.8200 +- (0.0004) 0.8218 +- (0.0006) 0.8183 +- (0.0004)
AdaBoost 0.7941 +- (0.0012) 0.8264 +- (0.0033) 0.7643 +- (0.0018)
Linear SVM 0.3052 +- (0.2619) 0.3488 +- (0.3775) 0.5179 +- (0.1710)
Perceptron 0.1349 +- (0.2683) 0.1998 +- (0.3989) 0.1849 +- (0.1886)
Logistic Regression 0.0014 +- (0.0001) 0.0007 +- (0.0001) 0.3056 +- (0.0266)

Table 4. Results for exchange vertex classification when features related to exchanges
are removed. All results shown are mean+−std over the 10 runs.

Removal of the exchange features has an obvious negative impact on the
accuracy of the classifiers. Random forest F1 score drops to 0.82 (a decrease of
about .18), with the average number of incorrectly classified addresses increasing
from 2587 (0.266%) to 175956 (18.086%). Similar to the runs that included
exchange features, the average variance for the random forest classifier was very
low. With the removal of exchange related features, structural features rose in
importance. The new top 5 features and weights are: (1) # siblings (0.255); (2)
total out-weight (0.232); (3) total in-weight (0.217); (4) # successors (0.092); (5)
# predecessors (0.082). The former fourth and fifth ranked features are now the
top two, and in conjunction with the total in-weight represent the majority of the
discriminatory power. The top three now have a very equal share of importance,



indicating that the model relies on information from each of them instead of
a single dominating feature. Figure 9 shows the distribution of the number of
siblings for both exchange and non-exchange addresses. The distributions for
less than 100 siblings are easily separable, but become much more intertwined
when considering addresses with 100 or more siblings.

As we note in Section 3, the list of exchange addresses we have is incomplete.
However, it is impossible to know exactly how incomplete the list is – whether
we have 10% of the exchange addresses or 90%. A natural next question, then,
is to try to classify all of the unlabeled addresses using our models constructed
in the previous experiments.

All unlabeled addresses not used in training the classifiers were run through
both random forest models and predicted as an exchange address or not (Ta-
ble 5). The two classifiers yielded drastically different results. Using exchange
label features, a mere 0.28% of the unlabeled addresses were labeled as exchanges.
Conversely, 18.17% of the addresses were labeled as exchanges using the purely
structural features. If instead of omitting the training addresses from the results
we include them, the percent predicted raise to 3.98% and 21.87%. As 3.36% of
the addresses are labeled from our ground truth data, this result is expected.

It is likely that 18% is a much better estimate for the true exchange ad-
dress percent than 0.28%. The absence of Mt. Gox (among others) from our
label data, and its historical dominance in Bitcoin, indicates that we are missing
a large number of exchange addresses. Moreover, the extremely high accuracy
combined with the extremely low prediction of unlabeled addresses of the first
model suggests that the first classifier overfit the training data, exploiting the la-
bel features and becoming too reliant. Structural features, which we have perfect
knowledge of for all addresses, are much more reliable and generalizable.

With Label Features Without Label Features

All addresses 3.98% 21.87%
Unlabeled addresses 0.28% 18.17%
Middle addresses 1-out STBs 1.34% 48.35%
Middle addresses multi-out STBs 0.68% 52.09%

Table 5. Percent of addresses classified as exchanges.

Our initial proposition of STBs as a laundering pattern stems from a user
activity view of the network: a user receives bitcoin from an exchange, then
converts it back into fiat currency, with the hope of obfuscating any money trail.
From this perspective, addresses in the middle of an STB – which by definition
cannot be labeled as an exchange – should be less likely to be predicted as an
exchange than a randomly chosen unlabeled address. But (see Table 5) addresses
in the middle of an STB are 2-3x more likely to be classified as an exchange than
an a random unlabeled address. This directly contradicts our hypothesis, and
instead is highly suggestive of lots of inter-exchange activity taking place. Self-
churn [10] i.e. change-making is likely why an exchange address would be in the
middle of what would otherwise be an STB. For example, an exchange E1 sends
bitcoin to one of its customers, making change for itself with the excess bitcoin



in the transaction, and then another exchange E2 buys bitcoin from E1, creating
a 2-motif with exchanges on the input, middle, and output.

5 Conclusions and Future Work
In this work we make a first attempt at statistical and machine learning ap-
proaches that may be of interest in identifying laundering patterns, latent at-
tribute classification, and discriminatory analysis. Directed hypergraphs are a
sound model for transactions, and exchanges exhibit several patterns that are
distinct from general address behaviors, as also shown in previous work. Our
machine learning models are capable of labeling addresses as being owned by
exchanges or not with very high accuracy, even when restricted to purely struc-
tural features. STBs are proposed as a potential laundering pattern, and shown
to have a high degree of filtering when compared to the number of general 2-
motifs in the network. Finally, we showed that middle vertices in STBs are much
more likely to be classified as an exchange, indicating that there is a large amount
of inter-exchange activity taking place.

Obvious areas of improvement include a much better label set, including Mt.
Gox and generally being of higher fidelity. Similarly, an obvious area of expan-
sion is to move beyond 2-motifs to 3-motifs, and consider triangular and other
patterns involving three transactions. We have began the mathematical explo-
ration of the 3-motif in directed hypergraphs, and it is somewhat complicated
combinatorially, but manageable.

While we use learning to label an address as an exchange or not, the general
tasks of latent attribute learning and discriminatory feature analysis impose no
such constraint. A variety of customary labels may be of interest [10] – “mining
pool”, “wallet”, “exchange”, “vendor”, “gambling” – in addition to your own
personal labels – “suspicious”, “country X”. It is also not necessary to constrain
the analysis to a single label at a time, but instead use multi-class classification
models to predict from a set of labels. Moreover, instead of using a supervised
learning approach where we assume our label sets are complete, we could explore
methods such as PU Learning [7, 8], which account for imperfect data.

In addition to expanding the possible labels, the structure of interest could be
expanded as well. Instead of looking at single addresses, transactions, or chains of
transactions that form a higher level pattern, could be considered. For example,
Möser et al. [12] show that some mixing services leave a distinct transactional
pattern as a result of their mixing algorithms. Models for identifying similar
patterns could be constructed using the hand curated transactions found in [12].
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12. Möser, M., Böhme, R., Breuker, D.: An inquiry into money launder tools in the
bitcoin ecosystem. In: eCrime Researchers Summit. pp. 6–24. Springer (2013)
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Fig. 10. Frequency of exchanges in STBs.
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B Features Used

An address’ feature matrix is composed of the following features, extracted from
each day of the data and then aggregated. Features prefixed with “*” are those
removed in the second experiment, where exchange label based features are re-
moved.

1. total bitcoin received – How much BTC the address received from transac-
tion outputs over the full time window.

2. total bitcoin spent – How much BTC the address spent as transaction inputs
over the full time window.

3. bitcoin balance – Total bitcoin received minus total bitcoin spent.
4. num predecessors – How many unique addresses have been an input to

transactions where this address was an output.
5. num transaction outputs – How many times this address has been used in

a transaction output.
6. num successors – How many unique addresses have been an output in trans-

actions where this address was an input.
7. num transaction inputs – How many times this address has been used as a

transaction input.
8. num siblings – How many unique addresses have been co-inputs or co-

outputs with this address.



9. *num predecessor exchanges – How many unique exchange addresses have
been an input to transactions where this address was an output.

10. *num successor exchanges – How many unique exchange addresses have
been an output in transactions where this address was an input.

11. *num sibling exchanges – How many unique exchange addresses have been
co-inputs or co-outputs with this address.

12. num gamma patterns – How many times this address is part of a γ pattern.
13. num beta patterns – How many times this address is part of a β pattern.
14. num L1 patterns – How many times this address is part of an L1 pattern.
15. num L2 patterns – How many times this address is part of an L2 pattern.
16. num alpha patterns – How many times this address is part of a α pattern.
17. num alphaprime patterns – How many times this address is part of a α′

pattern.
18. reciprocity – How many of this addresses successors are also predecessors.
19. anti reciprocity – How many of this addresses predecessors are also succes-

sors.

We focused on local features that are fast to compute. Examples of more expen-
sive but potentially very useful features are explained in [13], e.g. peeling chains
or coinbase transactions.


